Semantic Enhancement Based Knowledge Graph Completion for Graph Convolutional Neural Networks

计算机科学 图形 知识图 卷积神经网络 人工智能 理论计算机科学
作者
Qiang Rao,Tiejun Wang
标识
DOI:10.1109/icemce60359.2023.10490589
摘要

Knowledge Graph Completion (KGC) is a task that aims to predict missing links in a knowledge graph based on known triples. Recent studies have demonstrated outstanding performance in KGC employing models grounded on Graph Convolutional Networks (GCN). Nevertheless, prevailing GCN-based models solely utilize neighborhood information of entities to reason, disregarding the textual semantic information of entities and relationships in the knowledge graph. Existing GCN models suffer from poor prediction performance when dealing with tail entities due to limitations. Additionally, these models still have shortcomings in the semantic feature interaction between entities and relations. This paper proposes a Semantic-Enhanced Graph Convolutional Network (SEGCN) for knowledge graph completion. The SEGCN leverages textual descriptions of entities and relations to obtain better entity and relation embeddings using a language model. Additionally, a new Attention-Convolutions Network (ACN) has been developed to enhance the semantic interaction among entities and relations. Based on experimental findings, SEGCN outperforms the state-of-the-art GCN-based model, CompGCN, by showing 0.4%, 0.6%, 0.1 %, and 0.2% improvements in MRR, Hits@l, Hits@3, and Hits@10 on the FB15k-237 dataset, and 1.9%, 1.0%, 2.5%, and 2.9% improvements on the WN18RR dataset, respectively. These findings demonstrate that SEGCN displays improved generalization and accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健应助LIU0809采纳,获得10
2秒前
1111发布了新的文献求助10
3秒前
3秒前
4秒前
ymu发布了新的文献求助10
5秒前
孙伟伟完成签到,获得积分10
5秒前
汉堡包应助布坎南采纳,获得10
5秒前
YonghangHe完成签到,获得积分10
5秒前
5秒前
九叶发布了新的文献求助10
6秒前
6秒前
聪慧海蓝完成签到 ,获得积分10
6秒前
共享精神应助lixiang采纳,获得10
7秒前
7秒前
孙伟伟发布了新的文献求助10
8秒前
科研通AI2S应助否认冶游史采纳,获得10
8秒前
领导范儿应助林林采纳,获得10
8秒前
bingle0123发布了新的文献求助10
8秒前
FashionBoy应助悄悄采纳,获得10
9秒前
世上无难事完成签到,获得积分10
9秒前
浅香千雪发布了新的文献求助30
11秒前
彭于晏应助揽星色采纳,获得10
11秒前
12秒前
12秒前
万能图书馆应助fhw采纳,获得10
13秒前
斯文败类应助efil采纳,获得10
15秒前
浑语堂完成签到 ,获得积分10
17秒前
17秒前
科研小白LR完成签到,获得积分10
18秒前
西瓜糖发布了新的文献求助10
20秒前
薛定谔的猫完成签到,获得积分10
20秒前
21秒前
pluto应助cyj采纳,获得10
21秒前
共享精神应助cyj采纳,获得10
22秒前
och3完成签到,获得积分10
24秒前
24秒前
27秒前
29秒前
29秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412622
求助须知:如何正确求助?哪些是违规求助? 3015253
关于积分的说明 8869486
捐赠科研通 2703007
什么是DOI,文献DOI怎么找? 1481978
科研通“疑难数据库(出版商)”最低求助积分说明 685102
邀请新用户注册赠送积分活动 679761