Semantic Enhancement Based Knowledge Graph Completion for Graph Convolutional Neural Networks

计算机科学 图形 知识图 卷积神经网络 人工智能 理论计算机科学
作者
Qiang Rao,Tiejun Wang
标识
DOI:10.1109/icemce60359.2023.10490589
摘要

Knowledge Graph Completion (KGC) is a task that aims to predict missing links in a knowledge graph based on known triples. Recent studies have demonstrated outstanding performance in KGC employing models grounded on Graph Convolutional Networks (GCN). Nevertheless, prevailing GCN-based models solely utilize neighborhood information of entities to reason, disregarding the textual semantic information of entities and relationships in the knowledge graph. Existing GCN models suffer from poor prediction performance when dealing with tail entities due to limitations. Additionally, these models still have shortcomings in the semantic feature interaction between entities and relations. This paper proposes a Semantic-Enhanced Graph Convolutional Network (SEGCN) for knowledge graph completion. The SEGCN leverages textual descriptions of entities and relations to obtain better entity and relation embeddings using a language model. Additionally, a new Attention-Convolutions Network (ACN) has been developed to enhance the semantic interaction among entities and relations. Based on experimental findings, SEGCN outperforms the state-of-the-art GCN-based model, CompGCN, by showing 0.4%, 0.6%, 0.1 %, and 0.2% improvements in MRR, Hits@l, Hits@3, and Hits@10 on the FB15k-237 dataset, and 1.9%, 1.0%, 2.5%, and 2.9% improvements on the WN18RR dataset, respectively. These findings demonstrate that SEGCN displays improved generalization and accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
社会主义接班人完成签到 ,获得积分10
1秒前
黎明暂缓发布了新的文献求助10
2秒前
细腻的山水完成签到 ,获得积分10
2秒前
乐乐完成签到,获得积分10
3秒前
3秒前
3秒前
maxin完成签到,获得积分10
3秒前
yznfly应助木头人采纳,获得30
4秒前
呜呜呜完成签到,获得积分10
4秒前
czp发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
哎呦魏完成签到,获得积分10
6秒前
向语堂发布了新的文献求助10
7秒前
shineedou完成签到,获得积分10
7秒前
du发布了新的文献求助30
7秒前
尊敬的帅哥完成签到,获得积分20
8秒前
烂漫薯片发布了新的文献求助10
8秒前
9秒前
9秒前
cyj发布了新的文献求助10
10秒前
所所应助李Li采纳,获得10
10秒前
安玖完成签到,获得积分10
11秒前
隔壁巷子里的劉完成签到 ,获得积分10
12秒前
坦率的心锁完成签到,获得积分10
12秒前
小疙瘩发布了新的文献求助10
12秒前
13秒前
Kevin Li完成签到,获得积分10
13秒前
思思发布了新的文献求助10
13秒前
13秒前
lan完成签到 ,获得积分10
14秒前
wthef发布了新的文献求助30
15秒前
suiyi完成签到,获得积分20
15秒前
向语堂完成签到,获得积分10
15秒前
黑天鹅完成签到 ,获得积分20
16秒前
16秒前
脑洞疼应助尊敬的帅哥采纳,获得10
16秒前
呆萌的莲完成签到,获得积分10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960796
求助须知:如何正确求助?哪些是违规求助? 3506987
关于积分的说明 11133209
捐赠科研通 3239307
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872145
科研通“疑难数据库(出版商)”最低求助积分说明 803149