Semantic Enhancement Based Knowledge Graph Completion for Graph Convolutional Neural Networks

计算机科学 图形 知识图 卷积神经网络 人工智能 理论计算机科学
作者
Qiang Rao,Tiejun Wang
标识
DOI:10.1109/icemce60359.2023.10490589
摘要

Knowledge Graph Completion (KGC) is a task that aims to predict missing links in a knowledge graph based on known triples. Recent studies have demonstrated outstanding performance in KGC employing models grounded on Graph Convolutional Networks (GCN). Nevertheless, prevailing GCN-based models solely utilize neighborhood information of entities to reason, disregarding the textual semantic information of entities and relationships in the knowledge graph. Existing GCN models suffer from poor prediction performance when dealing with tail entities due to limitations. Additionally, these models still have shortcomings in the semantic feature interaction between entities and relations. This paper proposes a Semantic-Enhanced Graph Convolutional Network (SEGCN) for knowledge graph completion. The SEGCN leverages textual descriptions of entities and relations to obtain better entity and relation embeddings using a language model. Additionally, a new Attention-Convolutions Network (ACN) has been developed to enhance the semantic interaction among entities and relations. Based on experimental findings, SEGCN outperforms the state-of-the-art GCN-based model, CompGCN, by showing 0.4%, 0.6%, 0.1 %, and 0.2% improvements in MRR, Hits@l, Hits@3, and Hits@10 on the FB15k-237 dataset, and 1.9%, 1.0%, 2.5%, and 2.9% improvements on the WN18RR dataset, respectively. These findings demonstrate that SEGCN displays improved generalization and accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助2633148059采纳,获得10
1秒前
miao完成签到,获得积分10
1秒前
Bertha完成签到,获得积分10
1秒前
11完成签到,获得积分10
1秒前
1秒前
SciGPT应助Baron采纳,获得10
3秒前
左岸完成签到,获得积分10
3秒前
cong完成签到,获得积分10
3秒前
不低头完成签到,获得积分10
3秒前
3秒前
phil完成签到,获得积分10
4秒前
camellia完成签到 ,获得积分10
4秒前
samuel完成签到,获得积分10
4秒前
在水一方应助梧桐雨210采纳,获得10
4秒前
helinahs发布了新的文献求助10
4秒前
5秒前
5秒前
umi发布了新的文献求助10
5秒前
Zone发布了新的文献求助10
6秒前
SciGPT应助菠萝蜜采纳,获得10
6秒前
6秒前
陈曦读研版完成签到 ,获得积分10
7秒前
斯文凝蕊完成签到,获得积分10
7秒前
Linzi完成签到,获得积分10
7秒前
psycho发布了新的文献求助10
8秒前
陈大大完成签到,获得积分10
8秒前
浮游应助刘明采纳,获得10
8秒前
张兴博完成签到,获得积分10
9秒前
潇洒的如松完成签到,获得积分10
9秒前
YangSY完成签到,获得积分10
10秒前
孟一完成签到,获得积分10
10秒前
10秒前
wmf完成签到 ,获得积分10
10秒前
顺利豆芽发布了新的文献求助30
10秒前
joyce930728完成签到 ,获得积分10
11秒前
2633148059完成签到,获得积分10
11秒前
HuLL完成签到 ,获得积分10
11秒前
loveananya完成签到,获得积分10
11秒前
12秒前
夜夜完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5162882
求助须知:如何正确求助?哪些是违规求助? 4355956
关于积分的说明 13560837
捐赠科研通 4200975
什么是DOI,文献DOI怎么找? 2304090
邀请新用户注册赠送积分活动 1304063
关于科研通互助平台的介绍 1250390