Association of METS-IR index with depressive symptoms in US adults: A cross-sectional study

横断面研究 四分位数 全国健康与营养检查调查 混淆 萧条(经济学) 逻辑回归 内科学 人口 医学 人口学 置信区间 环境卫生 病理 社会学 经济 宏观经济学
作者
Qi Huang,Denghong Wang,Shanshan Chen,Lei Tang,Chaoyang Ma
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:355: 355-362 被引量:13
标识
DOI:10.1016/j.jad.2024.03.129
摘要

An association between insulin resistance (IR) and depression has been identified in recent years. The purpose of this study was to examine the relationship between IR and depression in the general population. The population for this cross-sectional study consisted of adults participating in the National Health and Nutrition Examination Survey (NHANES) between 2005 and 2018. Insulin sensitivity was assessed using the Metabolic Score for IR (METS-IR) index, while depression was evaluated using the Patient Health Questionnaire (PHQ)-9. Logistic regression analyses, subgroup analyses, and dose-response curves were conducted to assess the association between the METS-IR index and depression. A total of 13,157 adults aged over 20 years were included in this study. After adjusting for potential confounders, it was observed that each unit increase in the METS-IR index was associated with a 1.1 percentage point increase in the prevalence of depression (OR = 1.011; 95 % CI: 1.008, 1.014). Patients in the 4th quartile of the METS-IR index had a higher likelihood of depression compared to those in the 1st quartile (OR = 1.386, 95 % CI: 1.239, 1.549). Stratified analyses demonstrated consistent results in all subgroups, except for men, patients under 40 years of age, and those with a history of cancer. Dose-response curves indicated a nonlinear relationship between the METS-IR index and the risk of depression, with an inflection point value of 32.443 according to threshold effect analysis. Our findings suggest that higher METS-IR scores are associated with an increased likelihood of experiencing depressive symptoms among U.S. adults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HCl完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
2秒前
2秒前
Hollen完成签到 ,获得积分10
3秒前
慕青应助学术蠕虫采纳,获得10
4秒前
4秒前
叶子发布了新的文献求助10
5秒前
orangel完成签到,获得积分10
6秒前
半壶月色半边天完成签到 ,获得积分10
7秒前
tmpstlml发布了新的文献求助10
7秒前
8秒前
8秒前
不安饼干完成签到 ,获得积分10
10秒前
活泼的飞鸟完成签到,获得积分10
10秒前
11秒前
xuyun发布了新的文献求助10
11秒前
11秒前
zzcres完成签到,获得积分10
13秒前
eeeee完成签到 ,获得积分10
13秒前
乐观德地完成签到,获得积分10
14秒前
大个应助yf_zhu采纳,获得10
14秒前
llk发布了新的文献求助10
15秒前
一只大肥猫完成签到,获得积分10
15秒前
15秒前
17秒前
17秒前
17秒前
17秒前
科研通AI5应助GGG采纳,获得10
18秒前
18秒前
20秒前
Ann发布了新的文献求助20
20秒前
20秒前
buno应助duxinyue采纳,获得10
20秒前
xlj发布了新的文献求助10
21秒前
21秒前
可爱的函函应助zhen采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808