残余物
计算机科学
人工智能
模式识别(心理学)
算法
作者
Hongbin Lv,Yongfeng Zhang,Tiantian Xiao,Ziwei Wang,Shuai Wang,Hailing Feng,Xianxun Zhao,Yanna Zhao
标识
DOI:10.1142/s0129065724500424
摘要
Timely and accurately seizure detection is of great importance for the diagnosis and treatment of epilepsy patients. Existing seizure detection models are often complex and time-consuming, highlighting the urgent need for lightweight seizure detection. Additionally, existing methods often neglect the key characteristic channels and spatial regions of electroencephalography (EEG) signals. To solve these issues, we propose a lightweight EEG-based seizure detection model named lightweight inverted residual attention network (LRAN). Specifically, we employ a four-stage inverted residual mobile block (iRMB) to effectively extract the hierarchical features from EEG. The convolutional block attention module (CBAM) is introduced to make the model focus on important feature channels and spatial information, thereby enhancing the discrimination of the learned features. Finally, convolution operations are used to capture local information and spatial relationships between features. We conduct intra-subject and inter-subject experiments on a publicly available dataset. Intra-subject experiments obtain 99.25% accuracy in segment-based detection and 0.36/h false detection rate (FDR) in event-based detection, respectively. Inter-subject experiments obtain 84.32% accuracy. Both sets of experiments maintain high classification accuracy with a low number of parameters, where the multiply accumulate operations (MACs) are 25.86[Formula: see text]M and the number of parameters is 0.57[Formula: see text]M.
科研通智能强力驱动
Strongly Powered by AbleSci AI