Feature shared multi-decoder network using complementary learning for Photon counting CT ring artifact suppression

工件(错误) 特征(语言学) 计算机科学 戒指(化学) 人工智能 模式识别(心理学) 化学 哲学 语言学 有机化学
作者
Wei Cui,Haipeng Lv,Jiping Wang,Yanyan Zheng,Zhongyi Wu,Hui Zhao,Jian Zheng,Ming Li
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (3): 529-547
标识
DOI:10.3233/xst-230396
摘要

BACKGROUND: Photon-counting computed tomography (Photon counting CT) utilizes photon-counting detectors to precisely count incident photons and measure their energy. These detectors, compared to traditional energy integration detectors, provide better image contrast and material differentiation. However, Photon counting CT tends to show more noticeable ring artifacts due to limited photon counts and detector response variations, unlike conventional spiral CT. OBJECTIVE: To comprehensively address this issue, we propose a novel feature shared multi-decoder network (FSMDN) that utilizes complementary learning to suppress ring artifacts in Photon counting CT images. METHODS: Specifically, we employ a feature-sharing encoder to extract context and ring artifact features, facilitating effective feature sharing. These shared features are also independently processed by separate decoders dedicated to the context and ring artifact channels, working in parallel. Through complementary learning, this approach achieves superior performance in terms of artifact suppression while preserving tissue details. RESULTS: We conducted numerous experiments on Photon counting CT images with three-intensity ring artifacts. Both qualitative and quantitative results demonstrate that our network model performs exceptionally well in correcting ring artifacts at different levels while exhibiting superior stability and robustness compared to the comparison methods. CONCLUSIONS: In this paper, we have introduced a novel deep learning network designed to mitigate ring artifacts in Photon counting CT images. The results illustrate the viability and efficacy of our proposed network model as a new deep learning-based method for suppressing ring artifacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助lulufighting采纳,获得10
刚刚
1秒前
爱笑的沐阳君完成签到,获得积分10
1秒前
填海完成签到,获得积分10
2秒前
3秒前
Aurora完成签到 ,获得积分10
3秒前
静观海棠应助月光采纳,获得50
4秒前
5秒前
6秒前
6秒前
馒头发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
zhuzhu发布了新的文献求助30
8秒前
9秒前
9秒前
橙汁发布了新的文献求助10
9秒前
10秒前
脸小呆呆发布了新的文献求助10
11秒前
11秒前
小云杉发布了新的文献求助10
12秒前
12秒前
12秒前
CipherSage应助zzc采纳,获得10
12秒前
忒啦啦发布了新的文献求助10
13秒前
yanghaiyu发布了新的文献求助10
13秒前
rrrrrrry发布了新的文献求助20
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
鱼仔发布了新的文献求助10
15秒前
lulufighting发布了新的文献求助10
15秒前
15秒前
yeeeee完成签到,获得积分10
15秒前
16秒前
Akim应助美好斓采纳,获得10
18秒前
高贵的迎蕾完成签到 ,获得积分10
18秒前
充电宝应助健壮夏山采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729141
求助须知:如何正确求助?哪些是违规求助? 5316369
关于积分的说明 15315857
捐赠科研通 4876150
什么是DOI,文献DOI怎么找? 2619263
邀请新用户注册赠送积分活动 1568820
关于科研通互助平台的介绍 1525317