Feature shared multi-decoder network using complementary learning for Photon counting CT ring artifact suppression

工件(错误) 特征(语言学) 计算机科学 戒指(化学) 人工智能 模式识别(心理学) 化学 哲学 语言学 有机化学
作者
Wei Cui,Haipeng Lv,Jiping Wang,Yanyan Zheng,Zhongyi Wu,Hui Zhao,Jian Zheng,Ming Li
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (3): 529-547
标识
DOI:10.3233/xst-230396
摘要

BACKGROUND: Photon-counting computed tomography (Photon counting CT) utilizes photon-counting detectors to precisely count incident photons and measure their energy. These detectors, compared to traditional energy integration detectors, provide better image contrast and material differentiation. However, Photon counting CT tends to show more noticeable ring artifacts due to limited photon counts and detector response variations, unlike conventional spiral CT. OBJECTIVE: To comprehensively address this issue, we propose a novel feature shared multi-decoder network (FSMDN) that utilizes complementary learning to suppress ring artifacts in Photon counting CT images. METHODS: Specifically, we employ a feature-sharing encoder to extract context and ring artifact features, facilitating effective feature sharing. These shared features are also independently processed by separate decoders dedicated to the context and ring artifact channels, working in parallel. Through complementary learning, this approach achieves superior performance in terms of artifact suppression while preserving tissue details. RESULTS: We conducted numerous experiments on Photon counting CT images with three-intensity ring artifacts. Both qualitative and quantitative results demonstrate that our network model performs exceptionally well in correcting ring artifacts at different levels while exhibiting superior stability and robustness compared to the comparison methods. CONCLUSIONS: In this paper, we have introduced a novel deep learning network designed to mitigate ring artifacts in Photon counting CT images. The results illustrate the viability and efficacy of our proposed network model as a new deep learning-based method for suppressing ring artifacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助一二采纳,获得10
刚刚
虎虎虎完成签到,获得积分10
刚刚
qzy完成签到,获得积分10
1秒前
香蕉觅云应助李志伟采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
jzw发布了新的文献求助10
2秒前
等流心发布了新的文献求助10
2秒前
OsHTAS发布了新的文献求助10
2秒前
wzwz发布了新的文献求助10
2秒前
3秒前
在水一方应助淡定的竺采纳,获得10
3秒前
3秒前
心灵美凝竹完成签到 ,获得积分10
4秒前
5秒前
Ayanami发布了新的文献求助10
6秒前
Hello应助cy采纳,获得30
7秒前
7秒前
最后一个天才完成签到,获得积分10
8秒前
莓莓发布了新的文献求助10
8秒前
zhangmeimei发布了新的文献求助10
10秒前
浮游应助Ayanami采纳,获得10
10秒前
Hilda007应助Terry采纳,获得10
10秒前
12秒前
12秒前
OsHTAS完成签到,获得积分10
13秒前
小庄完成签到 ,获得积分10
13秒前
13秒前
栗子完成签到 ,获得积分10
14秒前
Ayanami完成签到,获得积分10
15秒前
15秒前
15秒前
可爱的函函应助zz采纳,获得10
15秒前
坚强煜城发布了新的文献求助10
16秒前
17秒前
哪位完成签到,获得积分10
17秒前
17秒前
一二完成签到,获得积分10
17秒前
struggle发布了新的文献求助10
18秒前
li完成签到 ,获得积分10
18秒前
李志伟完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070231
求助须知:如何正确求助?哪些是违规求助? 4291424
关于积分的说明 13370277
捐赠科研通 4111739
什么是DOI,文献DOI怎么找? 2251660
邀请新用户注册赠送积分活动 1256787
关于科研通互助平台的介绍 1189405