Feature shared multi-decoder network using complementary learning for Photon counting CT ring artifact suppression

工件(错误) 特征(语言学) 计算机科学 戒指(化学) 人工智能 模式识别(心理学) 化学 哲学 语言学 有机化学
作者
Wei Cui,Haipeng Lv,Jiping Wang,Yanyan Zheng,Zhongyi Wu,Hui Zhao,Jian Zheng,Ming Li
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (3): 529-547
标识
DOI:10.3233/xst-230396
摘要

BACKGROUND: Photon-counting computed tomography (Photon counting CT) utilizes photon-counting detectors to precisely count incident photons and measure their energy. These detectors, compared to traditional energy integration detectors, provide better image contrast and material differentiation. However, Photon counting CT tends to show more noticeable ring artifacts due to limited photon counts and detector response variations, unlike conventional spiral CT. OBJECTIVE: To comprehensively address this issue, we propose a novel feature shared multi-decoder network (FSMDN) that utilizes complementary learning to suppress ring artifacts in Photon counting CT images. METHODS: Specifically, we employ a feature-sharing encoder to extract context and ring artifact features, facilitating effective feature sharing. These shared features are also independently processed by separate decoders dedicated to the context and ring artifact channels, working in parallel. Through complementary learning, this approach achieves superior performance in terms of artifact suppression while preserving tissue details. RESULTS: We conducted numerous experiments on Photon counting CT images with three-intensity ring artifacts. Both qualitative and quantitative results demonstrate that our network model performs exceptionally well in correcting ring artifacts at different levels while exhibiting superior stability and robustness compared to the comparison methods. CONCLUSIONS: In this paper, we have introduced a novel deep learning network designed to mitigate ring artifacts in Photon counting CT images. The results illustrate the viability and efficacy of our proposed network model as a new deep learning-based method for suppressing ring artifacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
隐形曼青应助noah采纳,获得10
刚刚
科研通AI2S应助典雅的静采纳,获得10
1秒前
哈哈完成签到 ,获得积分10
1秒前
1秒前
Jiangnj完成签到,获得积分10
1秒前
Zhouzhou发布了新的文献求助10
2秒前
Ganlou应助土娃子采纳,获得10
2秒前
芝麻汤圆完成签到,获得积分10
3秒前
小二郎应助azure采纳,获得10
3秒前
Sor完成签到,获得积分10
4秒前
落后觅波完成签到,获得积分20
4秒前
威武忆山完成签到 ,获得积分10
5秒前
5秒前
朴实云朵发布了新的文献求助10
5秒前
CipherSage应助汤浩宏采纳,获得10
5秒前
6秒前
7秒前
我是老大应助积极问晴采纳,获得10
7秒前
SCH_zhu完成签到 ,获得积分10
8秒前
8秒前
khh完成签到 ,获得积分10
8秒前
A3000完成签到,获得积分10
8秒前
科研小白完成签到,获得积分10
9秒前
沿途南行发布了新的文献求助10
9秒前
9秒前
曾子曰完成签到,获得积分10
9秒前
9秒前
10秒前
LilyZhang发布了新的文献求助10
10秒前
思源应助day_on采纳,获得10
10秒前
科研小白发布了新的文献求助10
11秒前
12秒前
小黑驴发布了新的文献求助10
12秒前
zdl完成签到,获得积分10
13秒前
bxw发布了新的文献求助10
13秒前
13秒前
今后应助地道牛采纳,获得10
13秒前
14秒前
14秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262406
求助须知:如何正确求助?哪些是违规求助? 2903122
关于积分的说明 8324156
捐赠科研通 2573172
什么是DOI,文献DOI怎么找? 1398083
科研通“疑难数据库(出版商)”最低求助积分说明 654018
邀请新用户注册赠送积分活动 632623