已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving protein-protein interaction prediction using protein language model and protein network features

蛋白质-蛋白质相互作用 计算机科学 化学 计算生物学 生物化学 生物
作者
Jun Hu,Zhe Li,B. Dharma Rao,Maha A. Thafar,Muhammad Arif
出处
期刊:Analytical Biochemistry [Elsevier]
卷期号:693: 115550-115550 被引量:2
标识
DOI:10.1016/j.ab.2024.115550
摘要

Interactions between proteins are ubiquitous in a wide variety of biological processes. Accurately identifying the protein-protein interaction (PPI) is of significant importance for understanding the mechanisms of protein functions and facilitating drug discovery. Although the wet-lab technological methods are the best way to identify PPI, their major constraints are their time-consuming nature, high cost, and labor-intensiveness. Hence, lots of efforts have been made towards developing computational methods to improve the performance of PPI prediction. In this study, we propose a novel hybrid computational method (called KSGPPI) that aims at improving the prediction performance of PPI via extracting the discriminative information from protein sequences and interaction networks. The KSGPPI model comprises two feature extraction modules. In the first feature extraction module, a large protein language model, ESM-2, is employed to exploit the global complex patterns concealed within protein sequences. Subsequently, feature representations are further extracted through CKSAAP, and a two-dimensional convolutional neural network (CNN) is utilized to capture local information. In the second feature extraction module, the query protein acquires its similar protein from the STRING database via the sequence alignment tool NW-align and then captures the graph embedding feature for the query protein in the protein interaction network of the similar protein using the algorithm of Node2vec. Finally, the features of these two feature extraction modules are efficiently fused; the fused features are then fed into the multilayer perceptron to predict PPI. The results of five-fold cross-validation on the used benchmarked datasets demonstrate that KSGPPI achieves an average prediction accuracy of 88.96 %. Additionally, the average Matthews correlation coefficient value (0.781) of KSGPPI is significantly higher than that of those state-of-the-art PPI prediction methods. The standalone package of KSGPPI is freely downloaded at https://github.com/rickleezhe/KSGPPI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gujianhua发布了新的文献求助10
1秒前
打打应助洪焕良采纳,获得10
1秒前
2秒前
香蕉觅云应助卡皮巴拉采纳,获得10
4秒前
hiufo完成签到 ,获得积分10
6秒前
天天快乐应助Jrssion采纳,获得10
7秒前
Sicie完成签到,获得积分10
7秒前
老实嘉熙发布了新的文献求助10
8秒前
明亮的妙芙完成签到,获得积分20
9秒前
夏秋瑙发布了新的文献求助10
9秒前
野猪发布了新的文献求助10
10秒前
任hj完成签到,获得积分10
11秒前
13秒前
汉堡包应助Cwx2020采纳,获得10
14秒前
受伤幻桃完成签到 ,获得积分10
15秒前
15秒前
哈哈哈发布了新的文献求助10
16秒前
tingsHHH完成签到,获得积分10
16秒前
UTAU发布了新的文献求助10
17秒前
汉堡包应助老实嘉熙采纳,获得10
17秒前
Orange应助独特的泥猴桃采纳,获得10
18秒前
卡皮巴拉发布了新的文献求助10
20秒前
Jrssion发布了新的文献求助10
20秒前
鬼见愁发布了新的文献求助10
23秒前
野猪完成签到,获得积分10
24秒前
25秒前
26秒前
28秒前
刘敏发布了新的文献求助10
31秒前
Cwx2020发布了新的文献求助10
31秒前
3MB完成签到 ,获得积分10
31秒前
31秒前
pzhxsy发布了新的文献求助30
31秒前
莫语完成签到,获得积分10
32秒前
快乐的雨竹完成签到,获得积分10
36秒前
月亮完成签到,获得积分10
39秒前
39秒前
啊呀麦克完成签到,获得积分10
40秒前
Sure发布了新的文献求助20
42秒前
wwwww完成签到 ,获得积分10
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136861
求助须知:如何正确求助?哪些是违规求助? 2787866
关于积分的说明 7783453
捐赠科研通 2443938
什么是DOI,文献DOI怎么找? 1299488
科研通“疑难数据库(出版商)”最低求助积分说明 625461
版权声明 600954