已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving protein-protein interaction prediction using protein language model and protein network features

蛋白质-蛋白质相互作用 计算机科学 化学 计算生物学 生物化学 生物
作者
Jun Hu,Zhe Li,B. Dharma Rao,Maha A. Thafar,Muhammad Arif
出处
期刊:Analytical Biochemistry [Elsevier BV]
卷期号:693: 115550-115550 被引量:7
标识
DOI:10.1016/j.ab.2024.115550
摘要

Interactions between proteins are ubiquitous in a wide variety of biological processes. Accurately identifying the protein-protein interaction (PPI) is of significant importance for understanding the mechanisms of protein functions and facilitating drug discovery. Although the wet-lab technological methods are the best way to identify PPI, their major constraints are their time-consuming nature, high cost, and labor-intensiveness. Hence, lots of efforts have been made towards developing computational methods to improve the performance of PPI prediction. In this study, we propose a novel hybrid computational method (called KSGPPI) that aims at improving the prediction performance of PPI via extracting the discriminative information from protein sequences and interaction networks. The KSGPPI model comprises two feature extraction modules. In the first feature extraction module, a large protein language model, ESM-2, is employed to exploit the global complex patterns concealed within protein sequences. Subsequently, feature representations are further extracted through CKSAAP, and a two-dimensional convolutional neural network (CNN) is utilized to capture local information. In the second feature extraction module, the query protein acquires its similar protein from the STRING database via the sequence alignment tool NW-align and then captures the graph embedding feature for the query protein in the protein interaction network of the similar protein using the algorithm of Node2vec. Finally, the features of these two feature extraction modules are efficiently fused; the fused features are then fed into the multilayer perceptron to predict PPI. The results of five-fold cross-validation on the used benchmarked datasets demonstrate that KSGPPI achieves an average prediction accuracy of 88.96 %. Additionally, the average Matthews correlation coefficient value (0.781) of KSGPPI is significantly higher than that of those state-of-the-art PPI prediction methods. The standalone package of KSGPPI is freely downloaded at https://github.com/rickleezhe/KSGPPI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助11223采纳,获得10
1秒前
李健应助11223采纳,获得10
1秒前
2秒前
豌豆完成签到,获得积分10
2秒前
雪白的听寒完成签到 ,获得积分10
5秒前
善学以致用应助momo采纳,获得10
5秒前
6秒前
U9A关闭了U9A文献求助
6秒前
7秒前
1356完成签到,获得积分20
9秒前
luxiaoyu发布了新的文献求助10
11秒前
11秒前
豌豆发布了新的文献求助20
11秒前
1356发布了新的文献求助30
14秒前
15秒前
sciN完成签到 ,获得积分10
15秒前
U9A关闭了U9A文献求助
15秒前
philophysics发布了新的文献求助10
19秒前
科目三应助YuLu采纳,获得10
19秒前
Orange应助ckyyds采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
U9A关闭了U9A文献求助
22秒前
英俊的念寒完成签到,获得积分10
22秒前
lulu完成签到 ,获得积分10
22秒前
23秒前
Ruuo616完成签到 ,获得积分10
24秒前
小草三心完成签到 ,获得积分10
25秒前
在水一方应助suki采纳,获得10
25秒前
27秒前
27秒前
27秒前
27秒前
U9A关闭了U9A文献求助
29秒前
YuLu发布了新的文献求助10
30秒前
32秒前
32秒前
33秒前
33秒前
philophysics完成签到,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976512
求助须知:如何正确求助?哪些是违规求助? 3520548
关于积分的说明 11203949
捐赠科研通 3257210
什么是DOI,文献DOI怎么找? 1798648
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806555