Improving protein-protein interaction prediction using protein language model and protein network features

蛋白质-蛋白质相互作用 计算机科学 化学 计算生物学 生物化学 生物
作者
Jun Hu,Zhe Li,B. Dharma Rao,Maha A. Thafar,Muhammad Arif
出处
期刊:Analytical Biochemistry [Elsevier]
卷期号:693: 115550-115550 被引量:7
标识
DOI:10.1016/j.ab.2024.115550
摘要

Interactions between proteins are ubiquitous in a wide variety of biological processes. Accurately identifying the protein-protein interaction (PPI) is of significant importance for understanding the mechanisms of protein functions and facilitating drug discovery. Although the wet-lab technological methods are the best way to identify PPI, their major constraints are their time-consuming nature, high cost, and labor-intensiveness. Hence, lots of efforts have been made towards developing computational methods to improve the performance of PPI prediction. In this study, we propose a novel hybrid computational method (called KSGPPI) that aims at improving the prediction performance of PPI via extracting the discriminative information from protein sequences and interaction networks. The KSGPPI model comprises two feature extraction modules. In the first feature extraction module, a large protein language model, ESM-2, is employed to exploit the global complex patterns concealed within protein sequences. Subsequently, feature representations are further extracted through CKSAAP, and a two-dimensional convolutional neural network (CNN) is utilized to capture local information. In the second feature extraction module, the query protein acquires its similar protein from the STRING database via the sequence alignment tool NW-align and then captures the graph embedding feature for the query protein in the protein interaction network of the similar protein using the algorithm of Node2vec. Finally, the features of these two feature extraction modules are efficiently fused; the fused features are then fed into the multilayer perceptron to predict PPI. The results of five-fold cross-validation on the used benchmarked datasets demonstrate that KSGPPI achieves an average prediction accuracy of 88.96 %. Additionally, the average Matthews correlation coefficient value (0.781) of KSGPPI is significantly higher than that of those state-of-the-art PPI prediction methods. The standalone package of KSGPPI is freely downloaded at https://github.com/rickleezhe/KSGPPI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
xin发布了新的文献求助30
2秒前
2秒前
3秒前
务实寒天完成签到,获得积分10
3秒前
89757发布了新的文献求助10
3秒前
4秒前
GWNT完成签到,获得积分20
4秒前
5秒前
JZ发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
传奇3应助jmy1995采纳,获得10
7秒前
qu发布了新的文献求助10
8秒前
搜集达人应助等等采纳,获得10
8秒前
Adc应助悲凉的溪流采纳,获得10
8秒前
GWNT发布了新的文献求助10
9秒前
思源应助ilc采纳,获得10
9秒前
xxxksk完成签到 ,获得积分0
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
Anker完成签到,获得积分10
11秒前
啦11完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
刘雪晴发布了新的文献求助10
15秒前
Erick发布了新的文献求助20
16秒前
等等发布了新的文献求助10
19秒前
LiangWQ完成签到,获得积分10
19秒前
19秒前
琪琪扬扬发布了新的文献求助10
19秒前
20秒前
22秒前
小马甲应助实验狗采纳,获得10
23秒前
邵老头发布了新的文献求助10
23秒前
owldan发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713510
求助须知:如何正确求助?哪些是违规求助? 5216103
关于积分的说明 15271135
捐赠科研通 4865261
什么是DOI,文献DOI怎么找? 2611946
邀请新用户注册赠送积分活动 1562153
关于科研通互助平台的介绍 1519378