Magnetic Resonance Electrical Properties Tomography Based on Modified Physics-Informed Neural Network and Multiconstraints

磁共振成像 人工神经网络 断层摄影术 核磁共振 计算机断层摄影术 物理 医学物理学 计算机科学 人工智能 光学 放射科 医学
作者
Guohui Ruan,Zhaonian Wang,Chunyi Liu,Ling Xia,Li Wang,Qi Li,Wufan Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3391651
摘要

This paper presents a novel method based on leveraging physics-informed neural networks for magnetic resonance electrical property tomography (MREPT). MREPT is a noninvasive technique that can retrieve the spatial distribution of electrical properties (EPs) of scanned tissues from measured transmit radiofrequency (RF) in magnetic resonance imaging (MRI) systems. The reconstruction of EP values in MREPT is achieved by solving a partial differential equation derived from Maxwell's equations that lacks a direct solution. Most conventional MREPT methods suffer from artifacts caused by the invalidation of the assumption applied for simplification of the problem and numerical errors caused by numerical differentiation. Existing deep learning-based (DL-based) MREPT methods comprise data-driven methods that need to collect massive datasets for training or model-driven methods that are only validated in trivial cases. Hence we proposed a model-driven method that learns mapping from a measured RF, its spatial gradient and Laplacian to EPs using fully connected networks (FCNNs). The spatial gradient of EP can be computed through the automatic differentiation of FCNNs and the chain rule. FCNNs are optimized using the residual of the central physical equation of convection-reaction MREPT as the loss function ( L ). To alleviate the ill condition of the problem, we added multiconstraints, including the similarity constraint between permittivity and conductivity and the ℓ 1 norm of spatial gradients of permittivity and conductivity, to the L . We demonstrate the proposed method with a three-dimensional realistic head model, a digital phantom simulation, and a practical phantom experiment at a 9.4T animal MRI system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
buno应助吹气球的金毛采纳,获得10
2秒前
Meteor发布了新的文献求助10
3秒前
Cwx2020完成签到,获得积分10
4秒前
大兵发布了新的文献求助10
4秒前
罗罗诺亚完成签到,获得积分10
10秒前
小蘑菇应助书生采纳,获得10
10秒前
论文急急令完成签到,获得积分10
10秒前
Charail发布了新的文献求助30
12秒前
12秒前
13秒前
飞快的鸵鸟完成签到,获得积分20
14秒前
14秒前
14秒前
jiyang完成签到,获得积分10
14秒前
必发文章完成签到,获得积分20
15秒前
15秒前
清脆的以松完成签到 ,获得积分10
16秒前
Meteor完成签到,获得积分10
17秒前
今后应助wowser采纳,获得10
17秒前
有为发布了新的文献求助10
17秒前
科研通AI2S应助gy采纳,获得10
18秒前
18秒前
Fafa_完成签到,获得积分10
18秒前
20秒前
善学以致用应助马迦南采纳,获得10
21秒前
清脆的以松关注了科研通微信公众号
22秒前
23秒前
乐乐应助肖珂采纳,获得10
23秒前
25秒前
桐桐应助十月采纳,获得10
25秒前
孟商完成签到,获得积分10
25秒前
NAO4K发布了新的文献求助10
26秒前
神奇的种子完成签到,获得积分10
27秒前
may发布了新的文献求助10
27秒前
领会发布了新的文献求助10
28秒前
shann完成签到,获得积分10
28秒前
wowser发布了新的文献求助10
29秒前
妮妮完成签到,获得积分10
29秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234027
求助须知:如何正确求助?哪些是违规求助? 2880431
关于积分的说明 8215492
捐赠科研通 2547980
什么是DOI,文献DOI怎么找? 1377371
科研通“疑难数据库(出版商)”最低求助积分说明 647869
邀请新用户注册赠送积分活动 623248