Magnetic Resonance Electrical Properties Tomography Based on Modified Physics- Informed Neural Network and Multiconstraints

磁共振成像 人工神经网络 断层摄影术 核磁共振 计算机断层摄影术 物理 医学物理学 计算机科学 人工智能 光学 放射科 医学
作者
Guohui Ruan,Zhaonian Wang,Chunyi Liu,Ling Xia,Huafeng Wang,Qi Li,Wufan Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3263-3278 被引量:1
标识
DOI:10.1109/tmi.2024.3391651
摘要

This paper presents a novel method based on leveraging physics-informed neural networks for magnetic resonance electrical property tomography (MREPT). MREPT is a noninvasive technique that can retrieve the spatial distribution of electrical properties (EPs) of scanned tissues from measured transmit radiofrequency (RF) in magnetic resonance imaging (MRI) systems. The reconstruction of EP values in MREPT is achieved by solving a partial differential equation derived from Maxwell's equations that lacks a direct solution. Most conventional MREPT methods suffer from artifacts caused by the invalidation of the assumption applied for simplification of the problem and numerical errors caused by numerical differentiation. Existing deep learning-based (DL-based) MREPT methods comprise data-driven methods that need to collect massive datasets for training or model-driven methods that are only validated in trivial cases. Hence we proposed a model-driven method that learns mapping from a measured RF, its spatial gradient and Laplacian to EPs using fully connected networks (FCNNs). The spatial gradient of EP can be computed through the automatic differentiation of FCNNs and the chain rule. FCNNs are optimized using the residual of the central physical equation of convection-reaction MREPT as the loss function ( L) . To alleviate the ill condition of the problem, we added multiconstraints, including the similarity constraint between permittivity and conductivity and the l
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈尔婧完成签到,获得积分10
刚刚
shawn_89完成签到,获得积分10
1秒前
奈思完成签到 ,获得积分10
2秒前
3秒前
5秒前
dong应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
8R60d8应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
香蕉觅云应助古芍昂采纳,获得10
7秒前
ED应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
奥特超曼应助科研通管家采纳,获得10
7秒前
Ricey应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
ED应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
奥特超曼应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
奥特超曼应助科研通管家采纳,获得10
9秒前
9秒前
ED应助科研通管家采纳,获得10
9秒前
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
10秒前
修yx完成签到,获得积分10
10秒前
早睡早起发布了新的文献求助10
12秒前
12秒前
吃鱼的猫完成签到,获得积分10
13秒前
孤独的雪糕完成签到,获得积分10
13秒前
CHZBH完成签到,获得积分10
15秒前
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993793
求助须知:如何正确求助?哪些是违规求助? 3534447
关于积分的说明 11265507
捐赠科研通 3274273
什么是DOI,文献DOI怎么找? 1806326
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712