Magnetic Resonance Electrical Properties Tomography Based on Modified Physics-Informed Neural Network and Multiconstraints

磁共振成像 人工神经网络 断层摄影术 核磁共振 计算机断层摄影术 物理 医学物理学 计算机科学 人工智能 光学 放射科 医学
作者
Guohui Ruan,Zhaonian Wang,Chunyi Liu,Ling Xia,Li Wang,Qi Li,Wufan Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3391651
摘要

This paper presents a novel method based on leveraging physics-informed neural networks for magnetic resonance electrical property tomography (MREPT). MREPT is a noninvasive technique that can retrieve the spatial distribution of electrical properties (EPs) of scanned tissues from measured transmit radiofrequency (RF) in magnetic resonance imaging (MRI) systems. The reconstruction of EP values in MREPT is achieved by solving a partial differential equation derived from Maxwell's equations that lacks a direct solution. Most conventional MREPT methods suffer from artifacts caused by the invalidation of the assumption applied for simplification of the problem and numerical errors caused by numerical differentiation. Existing deep learning-based (DL-based) MREPT methods comprise data-driven methods that need to collect massive datasets for training or model-driven methods that are only validated in trivial cases. Hence we proposed a model-driven method that learns mapping from a measured RF, its spatial gradient and Laplacian to EPs using fully connected networks (FCNNs). The spatial gradient of EP can be computed through the automatic differentiation of FCNNs and the chain rule. FCNNs are optimized using the residual of the central physical equation of convection-reaction MREPT as the loss function ( L ). To alleviate the ill condition of the problem, we added multiconstraints, including the similarity constraint between permittivity and conductivity and the ℓ 1 norm of spatial gradients of permittivity and conductivity, to the L . We demonstrate the proposed method with a three-dimensional realistic head model, a digital phantom simulation, and a practical phantom experiment at a 9.4T animal MRI system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Mlwwq完成签到,获得积分10
1秒前
1秒前
小皮蛋儿完成签到,获得积分10
1秒前
lyn发布了新的文献求助10
1秒前
JUSTs0so完成签到,获得积分10
2秒前
失联者完成签到,获得积分10
2秒前
感性的神级完成签到,获得积分10
2秒前
眯眯眼的谷冬完成签到 ,获得积分10
2秒前
2秒前
花莫凋零发布了新的文献求助10
3秒前
szh123完成签到,获得积分10
3秒前
3秒前
安息香发布了新的文献求助10
3秒前
核桃完成签到,获得积分10
3秒前
丹dan发布了新的文献求助10
3秒前
3秒前
科研通AI5应助大方嵩采纳,获得10
4秒前
4秒前
HYG发布了新的文献求助30
4秒前
4秒前
宝贝发布了新的文献求助10
4秒前
FashionBoy应助tulip采纳,获得10
4秒前
万泉部诗人完成签到,获得积分10
5秒前
文静千愁发布了新的文献求助10
5秒前
YAN发布了新的文献求助10
5秒前
马洛发布了新的文献求助10
5秒前
5秒前
qiqi完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
喻辰星发布了新的文献求助10
7秒前
jasmine970000完成签到,获得积分10
7秒前
神勇的雅香应助zhanzhanzhan采纳,获得10
8秒前
研友_8yPrqZ完成签到,获得积分10
8秒前
自信的伊完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762