已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Attitude Solving Aided UWB/IMU Integrated Algorithm with Real-time NLOS Suppression

非视线传播 惯性测量装置 计算机科学 算法 人工智能 计算机视觉 电信 无线
作者
Yu Han,Xinglong Tan
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086312-086312
标识
DOI:10.1088/1361-6501/ad404e
摘要

Abstract In response to the challenges posed by non-line-of-sight (NLOS) errors and inadequate attitude estimation accuracy in ultra-wideband and inertial measurement unit (UWB/IMU) integrated navigation algorithms in the complex environment, a robust UWB/IMU integrated positioning scheme is proposed. On one hand, the utilization of the robust local weighted regression algorithm (RLWR) is employed to mitigate the impact of NLOS errors on UWB data. RLWR incorporates information from nodes with known pseudo-range within local time intervals into the regression model, enhancing the identification of NLOS errors and improving positioning accuracy. On the other hand, the variational Bayesian filter algorithm based on adaptive conjugate gradient descent (ACGD) is proposed to improve the accuracy of IMU attitude calculation. The algorithm leverages an ACGD approach to optimize the attitude output of the accelerometer and magnetometer. The output is then incorporated into the variational Bayesian filtering system alongside the gyroscopic attitude output compensated by integrated positioning. Compared to conventional quaternion calculation and gradient descent linear filtering methods, the approach exhibits superior precision and stability. The experimental findings demonstrate that the amalgamation of the proposed NLSO identification suppression algorithm and the enhanced attitude computation algorithm confers significant advantages in terms of both localization accuracy and attitude estimation precision in complex environments. Moreover, the robust solution presented in the paper ensures the preservation of filter performance in the event of UWB measurement failure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
宫宛儿发布了新的文献求助30
3秒前
袁大头发布了新的文献求助10
4秒前
zz完成签到,获得积分10
4秒前
zz发布了新的文献求助10
8秒前
ikun发布了新的文献求助10
9秒前
谷粱安卉完成签到 ,获得积分10
9秒前
含蓄亦凝发布了新的文献求助10
11秒前
13秒前
14秒前
15秒前
我要颗盐发布了新的文献求助10
18秒前
科研通AI5应助yyt采纳,获得10
18秒前
111发布了新的文献求助10
18秒前
啦啦啦啦发布了新的文献求助10
19秒前
soulcard发布了新的文献求助50
20秒前
22秒前
23秒前
23秒前
江来发布了新的文献求助30
25秒前
26秒前
大大小小发布了新的文献求助10
26秒前
27秒前
自然怜烟关注了科研通微信公众号
28秒前
12345发布了新的文献求助10
29秒前
SYLH应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得30
30秒前
SYLH应助科研通管家采纳,获得10
30秒前
香蕉觅云应助科研通管家采纳,获得10
30秒前
SYLH应助科研通管家采纳,获得10
30秒前
SYLH应助科研通管家采纳,获得10
30秒前
30秒前
大模型应助科研通管家采纳,获得10
30秒前
SYLH应助科研通管家采纳,获得10
30秒前
脑洞疼应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得30
30秒前
30秒前
lwww应助啦啦啦啦采纳,获得10
31秒前
31秒前
Jasper应助汉堡麻麻采纳,获得10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561680
求助须知:如何正确求助?哪些是违规求助? 3135271
关于积分的说明 9411778
捐赠科研通 2835787
什么是DOI,文献DOI怎么找? 1558642
邀请新用户注册赠送积分活动 728413
科研通“疑难数据库(出版商)”最低求助积分说明 716806