Development and validation of a nomogram prediction model for ADHD in children based on individual, family, and social factors

列线图 心理学 发展心理学 临床心理学 医学 肿瘤科
作者
Ting Gao,Lan Yang,Jiayu Zhou,Zhang Yu,Laishuan Wang,Yan Wang,Tianwei Wang
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:356: 483-491 被引量:1
标识
DOI:10.1016/j.jad.2024.04.069
摘要

A reliable, user-friendly, and multidimensional prediction tool can help to identify children at high risk for ADHD and facilitate early recognition and family management of ADHD. We aimed to develop and validate a risk nomogram for ADHD in children aged 3–17 years in the United States based on clinical manifestations and complex environments. A total of 141,356 cases were collected for the prediction model. Another 54,444 cases from a new data set were utilized for performing independent external validation. The LASSO regression was used to control possible variables. A final risk nomogram for ADHD was established based on logistic regression, and the discrimination and calibration of the established nomogram were evaluated by bootstrapping with 1000 resamples. A final risk nomogram for ADHD was established based on 13 independent predictors, including behavioral problems, learning disabilities, age, intellectual disabilities, anxiety symptoms, gender, premature birth, maternal age at childbirth, parent-child interaction patterns, etc. The C-index of this model was 0.887 in the training set, and 0.862 in the validation set. Internal and external validation proved that the model was reliable. A nomogram, a statistical prediction tool that assesses individualized ADHD risk for children is helpful for the early identification of children at high risk for ADHD and the construction of a conceptual model of society-family-school collaborative diagnosis, treatment, and management of ADHD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiao完成签到,获得积分10
1秒前
1秒前
1秒前
Estelle发布了新的文献求助10
1秒前
隐形曼青应助123采纳,获得10
1秒前
3秒前
CipherSage应助LuoJiajun采纳,获得10
3秒前
3秒前
4秒前
Ava应助凹凸先森采纳,获得10
4秒前
大娱乐家发布了新的文献求助10
4秒前
5秒前
虚拟的眼神完成签到,获得积分10
5秒前
6秒前
冯昊发布了新的文献求助10
7秒前
7秒前
伶俐楷瑞发布了新的文献求助10
8秒前
8秒前
Clam完成签到,获得积分20
9秒前
靠奶茶续命的一一完成签到,获得积分20
9秒前
10秒前
曾馨慧发布了新的文献求助10
10秒前
11秒前
冰阔落发布了新的文献求助10
12秒前
十三完成签到,获得积分10
12秒前
12秒前
jerryzhu发布了新的文献求助10
12秒前
mmddlj发布了新的文献求助10
12秒前
13秒前
zzz完成签到,获得积分10
15秒前
bkagyin应助Silence采纳,获得10
15秒前
15秒前
万能图书馆应助熊大采纳,获得10
15秒前
15秒前
cici发布了新的文献求助10
16秒前
刘庆峰关注了科研通微信公众号
16秒前
17秒前
啊哈发布了新的文献求助10
17秒前
万能图书馆应助转角采纳,获得10
17秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3410884
求助须知:如何正确求助?哪些是违规求助? 3014427
关于积分的说明 8863234
捐赠科研通 2701774
什么是DOI,文献DOI怎么找? 1481273
科研通“疑难数据库(出版商)”最低求助积分说明 684760
邀请新用户注册赠送积分活动 679281