Optimization of olive pomace dehydration process through the integration of computational fluid dynamics and deep learning

脱水 过程(计算) 动力学(音乐) 工艺工程 生化工程 计算机科学 环境科学 化学 工程类 食品科学 社会学 教育学 生物化学 操作系统
作者
José Cabrera-Escobar,David Vera,Francisco Jurado,Marisol Villafuerte Suárez,Luis Gonzalo Santillán-Valdiviezo,Antonio Rodríguez-Orta,Raúl Cabrera-Escobar
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:46 (1): 4756-4776
标识
DOI:10.1080/15567036.2024.2331563
摘要

This study introduces an innovative approach to optimize the dehydration process of olive pomace by combining computational fluid dynamics (CFD) and deep learning. Through CFD, it identifies the optimal air inlet velocity in a prototype of a passive direct solar dehydrator for olive pomace, which allows for the reduction of its moisture content for subsequent use as biomass. The prototype was simulated in ANSYS software, and this simulation consisted of the following steps: prototype design, meshing, selection of physical models, material assignment, boundary condition simulation, and validation of results with data obtained from the prototype. Following this process, it was concluded that the optimal air inlet velocity to the dehydration chamber is 0.1 m/s. Concurrently, an artificial neural network model was used to analyze data from sensors in the physical prototype, revealing that solar radiation and ambient temperature are the most influential variables on the temperature of the dehydration chamber. This analysis resulted in a predictive model for the optimization of the dehydration process, with a correlation coefficient of 0.9699 for temp_up and 0.9710 for temp_down, and a Willmott coefficient of 0.9999, demonstrating a high concordance between the model's predictions and the experimental data. The model's input variables include solar radiation, ambient temperature, and both external and internal air humidity. This integration of CFD and deep learning offers a promising methodology for improving olive pomace dehydration systems and the industry in general.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
万丈光芒张小乐完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
WWW完成签到,获得积分10
1秒前
Ava应助雪白的采白采纳,获得10
1秒前
2秒前
3秒前
Owen应助xiaotudou95采纳,获得10
3秒前
zsh发布了新的文献求助10
3秒前
57完成签到,获得积分10
3秒前
佩奇完成签到,获得积分10
4秒前
Yang发布了新的文献求助10
5秒前
赘婿应助喵喵采纳,获得10
5秒前
123发布了新的文献求助10
5秒前
橘子树完成签到,获得积分10
5秒前
6秒前
金金发布了新的文献求助10
6秒前
动次打次发布了新的文献求助30
6秒前
贝儿完成签到 ,获得积分10
7秒前
7秒前
HHHHH发布了新的文献求助10
7秒前
7秒前
8秒前
朱朱发布了新的文献求助20
8秒前
壮观醉柳发布了新的文献求助10
8秒前
8秒前
8秒前
Tracy麦子发布了新的文献求助10
8秒前
9秒前
搜集达人应助sobremasa采纳,获得10
9秒前
10秒前
华仔应助科研通管家采纳,获得10
10秒前
天亮polar完成签到,获得积分10
10秒前
贰鸟应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481399
求助须知:如何正确求助?哪些是违规求助? 3071505
关于积分的说明 9122297
捐赠科研通 2763255
什么是DOI,文献DOI怎么找? 1516352
邀请新用户注册赠送积分活动 701541
科研通“疑难数据库(出版商)”最低求助积分说明 700339