Modulating commercial pea protein gel properties through the addition of phenolic compounds

单宁酸 没食子酸 豌豆蛋白 化学 共价键 分子质量 没食子酸表没食子酸酯 多酚 溶解度 大小排阻色谱法 食品科学 核化学 有机化学 色谱法 抗氧化剂
作者
Iris Faber,Laurice Pouvreau,Atze Jan van der Goot,Julia K. Keppler
出处
期刊:Food Hydrocolloids [Elsevier]
卷期号:154: 110123-110123 被引量:6
标识
DOI:10.1016/j.foodhyd.2024.110123
摘要

The use of pea protein in dense food is limited because of the low gel strength. Commercial pea proteins were modified with phenolics under alkaline conditions (pH 9, 24 h) that favour covalent bonding. Three phenolic compounds that differ in molecular size but contain similar structural units were selected (gallic acid, 0.17 kDa; epigallocatechin gallate, 0.458 kDa; tannic acid, 1.71 kDa) to better understand the role of molecular weight and added hydroxyl and aromatic groups on the gelling properties. The effect of the dose on gelling properties was studied by varying the phenolic concentrations (0–4 mM). The maximum changes were observed for conjugates prepared with tannic acid: colour, ΔE 38; decreased concentration of binding sites, 43%; solubility, 31%. The maximum increase in gel strength was 16-fold from 3.0 to 48 kPa. The result was positively correlated with the mass concentration of the added phenolic compounds, molecular weight and the approximate number of hydroxyl groups. Modification of pea proteins with phenolics can be as effective as adding thickening agents to increase the gel strength. To increase the elasticity of pea protein gel, the phenolic concentration added should not exceed 1.36 g/L, which is equal to 3.8 wt% of the protein mass. We demonstrated that pea protein modification with phenolics makes a useful tool to tailor gel strength and elasticity based on the molecular weight and the dose of phenolic compounds added.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
范月月完成签到 ,获得积分10
2秒前
默默的皮牙子应助Rrr采纳,获得10
2秒前
默默的皮牙子应助Rrr采纳,获得10
2秒前
机智苗完成签到,获得积分10
2秒前
3秒前
小油条完成签到,获得积分10
4秒前
马保国123发布了新的文献求助10
4秒前
wanci应助晨曦采纳,获得10
4秒前
潇洒的翠丝完成签到,获得积分20
4秒前
Frank完成签到,获得积分10
4秒前
子车代芙完成签到,获得积分10
4秒前
陌路发布了新的文献求助10
5秒前
猪猪hero发布了新的文献求助10
6秒前
灵巧荆发布了新的文献求助10
6秒前
无私映秋发布了新的文献求助10
6秒前
思源应助zhui采纳,获得10
6秒前
小黄应助清欢采纳,获得10
6秒前
蕾子完成签到,获得积分20
6秒前
敬老院N号应助科研通管家采纳,获得30
7秒前
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
喜悦中道应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
健壮惋清完成签到 ,获得积分10
8秒前
桐桐应助佳佳采纳,获得10
8秒前
科研通AI5应助润润轩轩采纳,获得10
8秒前
8秒前
Orange应助w.h采纳,获得10
9秒前
稳重的安萱完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794