摩擦电效应
材料科学
纳米发生器
导电体
自愈水凝胶
纳米技术
拉伤
离子键合
可伸缩电子设备
复合材料
数码产品
电气工程
压电
离子
高分子化学
医学
物理
量子力学
内科学
工程类
作者
Tongda Lei,Yongheng Wang,Qingsong Zhang,Haoxuan Wang,Xingru Duan,Jing Yan,Zhaopeng Xia,Run Wang,Wan Shou,Xipeng Li,Jie Fan
出处
期刊:Nano Energy
[Elsevier]
日期:2024-04-21
卷期号:126: 109633-109633
被引量:10
标识
DOI:10.1016/j.nanoen.2024.109633
摘要
Conductive hydrogels have shown promising applications in a variety of portable smart wearable electronics and flexible sensors due to their high flexibility, stretchability, adjustable mechanical properties and excellent electrical conductivity. However, most of the current hydrogel-based flexible strain sensors and portable triboelectric nanogenerator (TENG) generally suffer from low stretchability/flexibility, poor mechanical properties, weak low-temperature tolerance and low power output. Herein, a multifunctional ionic conductive hydrogel (PPAVC-BA) with ultra-stretchability (~1750%), high transparency (85%), high electrical conductivity (13.7 mS/cm), and outstanding anti-freezing properties (below -80°C without freezing). The strain sensor assembled from the PPAVC-BA hydrogel shows high sensitivity (GF=4.43) and ultra-wide sensing detection range (0%-1100%) as well as fast response time. Based on these properties, the PPAVC-BA hydrogel strain sensor can accurately recognize different joint movements of the human body as well as weak muscle beats. In addition, the PPAVC-BA hydrogel-based TENG (PPAVC-BA-TENG) exhibits excellent electrical output performance, with an open circuit voltage (Voc) of about 420 V, a short circuit current (Isc) of 23 μA, a short-circuit transfer charge (Qsc) of 112 nC and a maximum power density of 2246.03 mW/m2, which allows it to power small electronic devices. This PPAVC-BA-TENG also shows outstanding tensile performance and can output stable electrical signals at 200% strain. Impressively, the PPAVC-BA-TENG exhibits good electrical output performance even at low temperature of -50°C and high temperature of 80°C. The flexible strain sensors and stretchable TENG for high performance and multifunctionality reported in this work provide viable references in the development of motion detection, energy harvesting and self-powered electronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI