清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An efficient computation offloading in edge environment using genetic algorithm with directed search techniques for IoT applications

计算机科学 计算卸载 计算 遗传算法 GSM演进的增强数据速率 物联网 边缘计算 分布式计算 算法 嵌入式系统 人工智能 机器学习
作者
R. Ezhilarasie,Anousouya Devi,Mandi Sushmanth Reddy,A. Umamakeswari,V. Subramaniyaswamy,V. Indragandhi,Vishnu Suresh
出处
期刊:Future Generation Computer Systems [Elsevier]
标识
DOI:10.1016/j.future.2024.04.021
摘要

The contemporary computations in the IoT environment are often outsourced to remote infrastructures due to inherent computation-intensive nature of tasks or to circumvent the high expenditures associated with establishing local infrastructures. Traditional approaches, be it cloud-based or localized, are deemed impractical for computation offloading in this scenario due to the trade-off between benefits and increased latency which is unacceptable for many real-time IoT applications. Computation offloading at the edge environment is a promising solution in leveraging the untapped resources at Edge. Offloading application execution to edge servers offers the potential to reduce completion time and fulfill application requirements. However, the simultaneous offloading of multiple entire applications to edge servers may strain their hardware and communication channels and also poses significant challenge for ensuring Quality of Service. To overcome this, a multi-site workflow offloading problem is conceptualized wherein tasks are strategically distributed across various edge sites for efficient execution. The problem is combinatorial and an optimal solution is never guaranteed through deterministic procedures. Thus this work proposes a novel metaheuristic approach based on modified Genetic Algorithm with Directed Search (GADS) operators that aim at optimizing the overall Execution Time (ET) and Energy Consumed (EC). The efficiency of GADS is demonstrated against alternatives, and a relative comparison is carried out in terms of the quality of the solution and the pace of convergence to the solution and approximately a minimum of 1% and maximum 15% gain is achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
40秒前
52秒前
刻苦代灵发布了新的文献求助10
53秒前
YZ完成签到 ,获得积分10
1分钟前
IlIIlIlIIIllI应助科研通管家采纳,获得20
1分钟前
33应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
斯文败类应助刻苦代灵采纳,获得10
1分钟前
1分钟前
方俊驰完成签到,获得积分10
2分钟前
微笑的井完成签到 ,获得积分10
2分钟前
luckss发布了新的文献求助10
2分钟前
香蕉觅云应助暴走小虎采纳,获得30
3分钟前
方羽应助科研通管家采纳,获得100
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
ceeray23应助复杂荧采纳,获得10
3分钟前
漂亮土豆完成签到,获得积分10
3分钟前
3分钟前
4分钟前
cyh完成签到,获得积分10
4分钟前
cyh发布了新的文献求助10
4分钟前
酷炫的向雪关注了科研通微信公众号
4分钟前
4分钟前
4分钟前
4分钟前
赵坤煊完成签到 ,获得积分10
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
暴走小虎发布了新的文献求助30
5分钟前
5分钟前
5分钟前
暴走小虎发布了新的文献求助10
6分钟前
老张完成签到 ,获得积分10
6分钟前
兴奋硬币完成签到,获得积分10
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445148
求助须知:如何正确求助?哪些是违规求助? 3041180
关于积分的说明 8984041
捐赠科研通 2729756
什么是DOI,文献DOI怎么找? 1497162
科研通“疑难数据库(出版商)”最低求助积分说明 692167
邀请新用户注册赠送积分活动 689714