An efficient computation offloading in edge environment using genetic algorithm with directed search techniques for IoT applications

计算机科学 计算卸载 计算 遗传算法 GSM演进的增强数据速率 物联网 边缘计算 分布式计算 算法 嵌入式系统 人工智能 机器学习
作者
R. Ezhilarasie,Anousouya Devi,Mandi Sushmanth Reddy,A. Umamakeswari,V. Subramaniyaswamy,V. Indragandhi,Vishnu Suresh
出处
期刊:Future Generation Computer Systems [Elsevier BV]
标识
DOI:10.1016/j.future.2024.04.021
摘要

The contemporary computations in the IoT environment are often outsourced to remote infrastructures due to inherent computation-intensive nature of tasks or to circumvent the high expenditures associated with establishing local infrastructures. Traditional approaches, be it cloud-based or localized, are deemed impractical for computation offloading in this scenario due to the trade-off between benefits and increased latency which is unacceptable for many real-time IoT applications. Computation offloading at the edge environment is a promising solution in leveraging the untapped resources at Edge. Offloading application execution to edge servers offers the potential to reduce completion time and fulfill application requirements. However, the simultaneous offloading of multiple entire applications to edge servers may strain their hardware and communication channels and also poses significant challenge for ensuring Quality of Service. To overcome this, a multi-site workflow offloading problem is conceptualized wherein tasks are strategically distributed across various edge sites for efficient execution. The problem is combinatorial and an optimal solution is never guaranteed through deterministic procedures. Thus this work proposes a novel metaheuristic approach based on modified Genetic Algorithm with Directed Search (GADS) operators that aim at optimizing the overall Execution Time (ET) and Energy Consumed (EC). The efficiency of GADS is demonstrated against alternatives, and a relative comparison is carried out in terms of the quality of the solution and the pace of convergence to the solution and approximately a minimum of 1% and maximum 15% gain is achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
a379896033完成签到 ,获得积分10
1秒前
科研通AI6应助疏雨采纳,获得10
1秒前
c445507405完成签到 ,获得积分10
1秒前
葫芦娃发布了新的文献求助10
3秒前
星星boy完成签到,获得积分10
3秒前
lzzk发布了新的文献求助30
3秒前
4秒前
Sabrina完成签到,获得积分10
5秒前
阔达静珊完成签到,获得积分10
6秒前
外向樱完成签到,获得积分10
7秒前
刘小博发布了新的文献求助10
7秒前
8秒前
传奇3应助yl采纳,获得10
8秒前
阿紫吖完成签到,获得积分10
9秒前
圆圆完成签到 ,获得积分10
9秒前
许安完成签到,获得积分10
9秒前
11秒前
葫芦娃完成签到,获得积分10
11秒前
文艺绾绾发布了新的文献求助10
11秒前
12秒前
爱学有机完成签到,获得积分10
13秒前
袁寒烟发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
欧阳文淇关注了科研通微信公众号
17秒前
17秒前
Hello应助科研通管家采纳,获得10
18秒前
华仔应助小宇采纳,获得10
18秒前
事不过三应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
xiaolei001应助科研通管家采纳,获得30
19秒前
李健应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
多多完成签到,获得积分10
19秒前
19秒前
Owen应助yl采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4970438
求助须知:如何正确求助?哪些是违规求助? 4227024
关于积分的说明 13165486
捐赠科研通 4014920
什么是DOI,文献DOI怎么找? 2196971
邀请新用户注册赠送积分活动 1209923
关于科研通互助平台的介绍 1124244