An efficient computation offloading in edge environment using genetic algorithm with directed search techniques for IoT applications

计算机科学 计算卸载 计算 遗传算法 GSM演进的增强数据速率 物联网 边缘计算 分布式计算 算法 嵌入式系统 人工智能 机器学习
作者
R. Ezhilarasie,Anousouya Devi,Mandi Sushmanth Reddy,A. Umamakeswari,V. Subramaniyaswamy,V. Indragandhi,Vishnu Suresh
出处
期刊:Future Generation Computer Systems [Elsevier BV]
标识
DOI:10.1016/j.future.2024.04.021
摘要

The contemporary computations in the IoT environment are often outsourced to remote infrastructures due to inherent computation-intensive nature of tasks or to circumvent the high expenditures associated with establishing local infrastructures. Traditional approaches, be it cloud-based or localized, are deemed impractical for computation offloading in this scenario due to the trade-off between benefits and increased latency which is unacceptable for many real-time IoT applications. Computation offloading at the edge environment is a promising solution in leveraging the untapped resources at Edge. Offloading application execution to edge servers offers the potential to reduce completion time and fulfill application requirements. However, the simultaneous offloading of multiple entire applications to edge servers may strain their hardware and communication channels and also poses significant challenge for ensuring Quality of Service. To overcome this, a multi-site workflow offloading problem is conceptualized wherein tasks are strategically distributed across various edge sites for efficient execution. The problem is combinatorial and an optimal solution is never guaranteed through deterministic procedures. Thus this work proposes a novel metaheuristic approach based on modified Genetic Algorithm with Directed Search (GADS) operators that aim at optimizing the overall Execution Time (ET) and Energy Consumed (EC). The efficiency of GADS is demonstrated against alternatives, and a relative comparison is carried out in terms of the quality of the solution and the pace of convergence to the solution and approximately a minimum of 1% and maximum 15% gain is achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
largpark完成签到 ,获得积分10
刚刚
1秒前
ccc关闭了ccc文献求助
1秒前
1秒前
1秒前
2秒前
DAYDAY完成签到 ,获得积分10
2秒前
kzkz完成签到,获得积分10
2秒前
priscilla完成签到,获得积分10
2秒前
行周完成签到,获得积分10
2秒前
QR完成签到 ,获得积分10
2秒前
FashionBoy应助lhnee采纳,获得10
2秒前
HSF发布了新的文献求助10
3秒前
hri发布了新的文献求助20
3秒前
荔枝完成签到,获得积分10
3秒前
4秒前
专注秋尽完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
小芒果发布了新的文献求助10
5秒前
5秒前
5秒前
大虫发布了新的文献求助10
5秒前
陈文文完成签到 ,获得积分10
6秒前
Akim应助priscilla采纳,获得10
6秒前
哇samm完成签到,获得积分10
7秒前
7秒前
lihn完成签到,获得积分10
7秒前
浑语堂完成签到,获得积分10
7秒前
wanwujiexu完成签到,获得积分10
8秒前
Ray完成签到,获得积分10
8秒前
行走江湖的破忒头完成签到,获得积分0
8秒前
舒心的芝麻完成签到,获得积分10
8秒前
烦人应助zzz采纳,获得10
8秒前
悟空完成签到,获得积分10
9秒前
Syk_发布了新的文献求助30
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953820
求助须知:如何正确求助?哪些是违规求助? 3499685
关于积分的说明 11096658
捐赠科研通 3230222
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801514