An efficient computation offloading in edge environment using genetic algorithm with directed search techniques for IoT applications

计算机科学 计算卸载 计算 遗传算法 GSM演进的增强数据速率 物联网 边缘计算 分布式计算 算法 嵌入式系统 人工智能 机器学习
作者
R. Ezhilarasie,Anousouya Devi,Mandi Sushmanth Reddy,A. Umamakeswari,V. Subramaniyaswamy,V. Indragandhi,Vishnu Suresh
出处
期刊:Future Generation Computer Systems [Elsevier]
标识
DOI:10.1016/j.future.2024.04.021
摘要

The contemporary computations in the IoT environment are often outsourced to remote infrastructures due to inherent computation-intensive nature of tasks or to circumvent the high expenditures associated with establishing local infrastructures. Traditional approaches, be it cloud-based or localized, are deemed impractical for computation offloading in this scenario due to the trade-off between benefits and increased latency which is unacceptable for many real-time IoT applications. Computation offloading at the edge environment is a promising solution in leveraging the untapped resources at Edge. Offloading application execution to edge servers offers the potential to reduce completion time and fulfill application requirements. However, the simultaneous offloading of multiple entire applications to edge servers may strain their hardware and communication channels and also poses significant challenge for ensuring Quality of Service. To overcome this, a multi-site workflow offloading problem is conceptualized wherein tasks are strategically distributed across various edge sites for efficient execution. The problem is combinatorial and an optimal solution is never guaranteed through deterministic procedures. Thus this work proposes a novel metaheuristic approach based on modified Genetic Algorithm with Directed Search (GADS) operators that aim at optimizing the overall Execution Time (ET) and Energy Consumed (EC). The efficiency of GADS is demonstrated against alternatives, and a relative comparison is carried out in terms of the quality of the solution and the pace of convergence to the solution and approximately a minimum of 1% and maximum 15% gain is achieved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助roro熊采纳,获得10
3秒前
3秒前
华仔应助幸福台灯采纳,获得10
4秒前
CodeCraft应助Azhe采纳,获得10
4秒前
米酒完成签到 ,获得积分10
4秒前
英姑应助细腻含羞草采纳,获得10
6秒前
michael发布了新的文献求助10
7秒前
丘比特应助younghippo采纳,获得10
10秒前
12秒前
乐乐完成签到,获得积分10
13秒前
14秒前
hf完成签到,获得积分20
14秒前
15秒前
15秒前
15秒前
可爱多完成签到,获得积分10
16秒前
qianlu完成签到 ,获得积分10
17秒前
roro熊发布了新的文献求助10
19秒前
19秒前
幸福台灯发布了新的文献求助10
19秒前
19秒前
章建清完成签到 ,获得积分10
19秒前
Azhe发布了新的文献求助10
20秒前
想发paper的金鱼完成签到,获得积分10
20秒前
周em12_发布了新的文献求助10
21秒前
东邪西毒加任我行完成签到,获得积分10
22秒前
22秒前
22秒前
搜集达人应助细腻含羞草采纳,获得10
24秒前
歪歪关注了科研通微信公众号
25秒前
25秒前
25秒前
无花果应助幸福台灯采纳,获得10
27秒前
灵兰QAQ完成签到,获得积分10
27秒前
戏谑发布了新的文献求助10
27秒前
LW90完成签到,获得积分10
27秒前
Akim应助roro熊采纳,获得10
27秒前
范范发布了新的文献求助30
28秒前
Zp发布了新的文献求助10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565622
求助须知:如何正确求助?哪些是违规求助? 4650680
关于积分的说明 14692351
捐赠科研通 4592670
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463281