FlashGNN: An In-SSD Accelerator for GNN Training

计算机科学 培训(气象学) 物理 气象学
作者
Fuping Niu,Jianhui Yue,Jiangqiu Shen,Xiaofei Liao,Hai Jin
标识
DOI:10.1109/hpca57654.2024.00035
摘要

Recently, Graph Neural Networks (GNNs) have emerged as powerful tools for data analysis, surpassing traditional algorithms in various applications. However, the growing size of real-world datasets has outpaced the capabilities of centralized CPU or G PU - based systems. To address this challenge, numerous distributed systems have been proposed. However, these systems suffer from low hardware utilization due to slow network data exchange. While SSDs provide a promising alternative with large capacity and improved access latency, SSD-based G NN training on a single computer is bottlenecked by slow PCIe bus data transfer. This bottleneck leads to low CPU and G PU utilization, as confirmed by our experiments. Moreover, the design of in-SSD GNN training is hindered by slow access to flash memory. FlashGNN is a proposed solution that overcomes the PCIe bottleneck, fully utilizes I/O parallelism in flash chips, and maximizes data reuse from fetched flash memory chunks for efficient GNN training. We achieve this by designing the SSD firmware to coordinate data movements and hardware unit access. To address design challenges arising from slow flash memory and limited resources, we propose a novel node-wise GNN training method, an efficient scheduling algorithm for flash requests, and a high-performance subgraph generation method. Experimental results demonstrate that FlashGNN outperforms Ginex, a state-of-the-art SSD-based GNN training system, with a speed-up ratio ranging from 4.89× to 11.83 × and achieves energy savings of 57.14 × to 192.66 × for four typical real-world graph datasets. Additionally, FlashGNN is up to 23.17 × more efficient than the enhanced state-of-the-art in-storage accelerator, SmartSAGE+.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aifeeling完成签到,获得积分10
刚刚
徐通通完成签到 ,获得积分10
刚刚
刚刚
友好的钢笔完成签到 ,获得积分10
刚刚
无辜的凡桃完成签到 ,获得积分10
1秒前
kaka完成签到 ,获得积分10
1秒前
懵懂小尉发布了新的文献求助10
2秒前
2秒前
zjl发布了新的文献求助10
2秒前
清秀的思天完成签到 ,获得积分10
3秒前
不吃香菜完成签到,获得积分10
3秒前
Eric完成签到 ,获得积分10
4秒前
小宋今天要更努力完成签到 ,获得积分10
4秒前
wisher发布了新的文献求助10
5秒前
pixie完成签到 ,获得积分10
5秒前
傻傻的芷巧完成签到 ,获得积分10
5秒前
5秒前
Docsiwen发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
asabopp完成签到,获得积分10
8秒前
Ergou完成签到 ,获得积分10
8秒前
meganzhang完成签到 ,获得积分10
8秒前
吃糖完成签到 ,获得积分10
8秒前
qazcy发布了新的文献求助10
8秒前
shenzhou9完成签到,获得积分10
8秒前
orange2806发布了新的文献求助10
8秒前
着急的冬瓜完成签到 ,获得积分10
8秒前
呜呼完成签到 ,获得积分10
8秒前
8564523完成签到 ,获得积分10
9秒前
Zooey旎旎完成签到,获得积分10
9秒前
zjl完成签到,获得积分20
9秒前
10秒前
纯2025完成签到,获得积分20
10秒前
LT完成签到 ,获得积分10
10秒前
ziyan完成签到 ,获得积分10
11秒前
小曲完成签到 ,获得积分10
11秒前
11秒前
绿泡泡完成签到 ,获得积分10
11秒前
Lee关注了科研通微信公众号
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662278
求助须知:如何正确求助?哪些是违规求助? 3223084
关于积分的说明 9750065
捐赠科研通 2932888
什么是DOI,文献DOI怎么找? 1605851
邀请新用户注册赠送积分活动 758174
科研通“疑难数据库(出版商)”最低求助积分说明 734727