亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A machine learning-based diagnostic model for myocardial infarction patients: Analysis of neutrophil extracellular traps-related genes and eQTL Mendelian randomization

孟德尔随机化 支持向量机 随机森林 机器学习 人工智能 基因 小桶 基因表达谱 医学 计算生物学 生物信息学 基因表达 计算机科学 遗传学 生物 基因本体论 基因型 遗传变异
作者
Sheng Meng,Xueying Cui
出处
期刊:Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:103 (12): e37363-e37363
标识
DOI:10.1097/md.0000000000037363
摘要

To identify neutrophil extracellular trap (NET)-associated gene features in the blood of patients with myocardial infarction (MI) using bioinformatics and machine learning, with the aim of exploring potential diagnostic utility in atherosclerosis. The datasets GSE66360 and GSE48060 were downloaded from the Gene Expression Omnibus (GEO) public database. GSE66360 was used as the training set, and GSE48060 was used as an independent validation set. Differential genes related to NETs were screened using R software. Machine learning was performed based on the differential expression of NET-related genes across different samples. The advantages and disadvantages of 4 machine learning algorithms (Random Forest [RF], Extreme Gradient Boosting [XGBoost, XGB], Generalized Linear Models [GLM], and Support Vector Machine-Recursive Feature Elimination [SVM-RFE]) were compared, and the optimal method was used to screen feature genes and construct diagnostic models, which were then validated in the external validation dataset. Correlations between feature genes and immune cells were analyzed, and samples were reclustered based on the expression of feature genes. Differences in downstream molecular mechanisms and immune responses were explored for different clusters. Weighted Gene Co-expression Network Analysis was performed on different clusters, and disease-related NET genes were extracted, followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Finally, Mendelian randomization was employed to further investigate the causal relationship between the expression of model genes and the occurrence of MI. Forty-seven NET-related differential genes were obtained, and after comparing the 4 machine learning methods, support vector machine was used to screen ATG7, MMP9, interleukin 6 (IL6), DNASE1, and PDE4B as key genes for the construction of diagnostic models. The diagnostic value of the model was validated in an independent external validation dataset. These five genes showed strong correlations with neutrophils. Different sample clusters also demonstrated differential enrichment in pathways such as nitrogen metabolism, complement and coagulation cascades, cytokine-cytokine receptor interaction, renin-angiotensin system, and steroid biosynthesis. The Mendelian randomization results demonstrate a causal relationship between the expression of ATG7 and the incidence of myocardial infarction. The feature genes ATG7, MMP9, IL6, DNASE1, and PDE4B, identified using bioinformatics, may serve as potential diagnostic biomarkers and therapeutic targets for Myocardial infarction. Specifically, the expression of ATG7 could potentially be a significant factor in the occurrence of MI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
小白发布了新的文献求助10
9秒前
要开心吖完成签到 ,获得积分10
10秒前
Owen应助科研通管家采纳,获得10
14秒前
可爱的函函应助wpj采纳,获得10
17秒前
NS完成签到,获得积分10
21秒前
24秒前
两个我完成签到 ,获得积分10
29秒前
相龙发布了新的文献求助10
29秒前
30秒前
海燕发布了新的文献求助10
37秒前
相龙完成签到,获得积分10
38秒前
tt完成签到 ,获得积分10
42秒前
55秒前
英俊的铭应助谦让小松鼠采纳,获得10
56秒前
锯子发布了新的文献求助10
1分钟前
www完成签到 ,获得积分10
1分钟前
动物园小科畜完成签到,获得积分10
1分钟前
小苏打真甜完成签到,获得积分10
1分钟前
笑笑完成签到,获得积分10
1分钟前
隐形曼青应助Luffy采纳,获得10
1分钟前
1分钟前
qq发布了新的文献求助10
1分钟前
1分钟前
111发布了新的文献求助10
1分钟前
1分钟前
yyds完成签到,获得积分10
1分钟前
wpj发布了新的文献求助10
1分钟前
1分钟前
等待安莲应助海燕采纳,获得10
1分钟前
liziqi发布了新的文献求助10
1分钟前
liziqi完成签到,获得积分10
2分钟前
111111发布了新的文献求助10
2分钟前
小哈完成签到 ,获得积分10
2分钟前
med_wudi完成签到,获得积分10
2分钟前
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
ET应助科研通管家采纳,获得20
2分钟前
111111完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460014
求助须知:如何正确求助?哪些是违规求助? 3054351
关于积分的说明 9041762
捐赠科研通 2743636
什么是DOI,文献DOI怎么找? 1505071
科研通“疑难数据库(出版商)”最低求助积分说明 695572
邀请新用户注册赠送积分活动 694860