Fast prediction of diverse rare ginsenoside contents in Panax ginseng through hyperspectral imaging assisted with the temporal convolutional network-attention mechanism (TCNA) deep learning

可解释性 高光谱成像 人参 人参皂甙 深度学习 计算机科学 模式识别(心理学) 机器学习 人工智能 医学 病理 替代医学
作者
Youyou Wang,Siman Wang,Yuwei Yuan,Xiaoyong Li,Ruibin Bai,Xiufu Wan,Tiegui Nan,Jian Yang,Luqi Huang
出处
期刊:Food Control [Elsevier BV]
卷期号:162: 110455-110455 被引量:7
标识
DOI:10.1016/j.foodcont.2024.110455
摘要

Combining hyperspectral imaging (HSI) with deep learning algorithms provides an effective and fast approach for evaluating the quality of food and agricultural by-products. This study comprehensively determined the quality of ginseng (Panax ginseng C. A. Meyer), an important medicinal and nutritional food, by evaluating the contents of diverse rare ginsenosides (RGs) using HSI technology. The results indicated that the combination of HSI with the deep learning temporal convolutional network-attention mechanism (TCNA) model achieved the best results in predicting the contents of six types of RGs (Rh1, Rh2, F1, Rg3, F4, and Rk1) simultaneously and effectively. Especially, the content detection of the six RGs based on the effective wavelengths showed that the TCNA model achieved coefficient of determination (R2) values above 0.890 and relative percentage deviation (RPD) values higher than 3.0, demonstrating excellent model performance. Meanwhile, the use of effective wavelengths makes the results of the TCNA model have better interpretability, and the simultaneous output of six RGs contents significantly improves prediction efficiency. The HSI assisted with the TCNA algorithm provides a rapid and effective detection approach for simultaneously predicting the content of diverse quality indicators. All these results will provide a new reference for developing convenient and rapid HSI equipment in the food and agricultural industry for direct and comprehensive quality inspection in markets in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得30
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
yar应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
坚定萤完成签到,获得积分10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
wuyuzegang应助科研通管家采纳,获得20
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
lemonli完成签到,获得积分20
3秒前
3秒前
20231125完成签到,获得积分10
3秒前
3秒前
CipherSage应助DDKK采纳,获得10
3秒前
AronHUANG发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助拼搏迎梦采纳,获得20
4秒前
爆米花应助缥缈的闭月采纳,获得30
4秒前
南极野人完成签到,获得积分10
5秒前
活泼一凤发布了新的文献求助10
5秒前
苹果沛柔完成签到,获得积分10
5秒前
6秒前
所所应助鱼2333采纳,获得10
6秒前
小鱼发布了新的文献求助10
7秒前
山大王yoyo完成签到,获得积分10
7秒前
Ava应助wucl1990采纳,获得10
7秒前
7秒前
Sunrise完成签到,获得积分10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620