Fast prediction of diverse rare ginsenoside contents in Panax ginseng through hyperspectral imaging assisted with the temporal convolutional network-attention mechanism (TCNA) deep learning

可解释性 高光谱成像 人参 人参皂甙 深度学习 计算机科学 模式识别(心理学) 机器学习 人工智能 医学 病理 替代医学
作者
Youyou Wang,Siman Wang,Yuwei Yuan,Xiaoyong Li,Ruibin Bai,Xiufu Wan,Tiegui Nan,Jian Yang,Luqi Huang
出处
期刊:Food Control [Elsevier]
卷期号:162: 110455-110455 被引量:21
标识
DOI:10.1016/j.foodcont.2024.110455
摘要

Combining hyperspectral imaging (HSI) with deep learning algorithms provides an effective and fast approach for evaluating the quality of food and agricultural by-products. This study comprehensively determined the quality of ginseng (Panax ginseng C. A. Meyer), an important medicinal and nutritional food, by evaluating the contents of diverse rare ginsenosides (RGs) using HSI technology. The results indicated that the combination of HSI with the deep learning temporal convolutional network-attention mechanism (TCNA) model achieved the best results in predicting the contents of six types of RGs (Rh1, Rh2, F1, Rg3, F4, and Rk1) simultaneously and effectively. Especially, the content detection of the six RGs based on the effective wavelengths showed that the TCNA model achieved coefficient of determination (R2) values above 0.890 and relative percentage deviation (RPD) values higher than 3.0, demonstrating excellent model performance. Meanwhile, the use of effective wavelengths makes the results of the TCNA model have better interpretability, and the simultaneous output of six RGs contents significantly improves prediction efficiency. The HSI assisted with the TCNA algorithm provides a rapid and effective detection approach for simultaneously predicting the content of diverse quality indicators. All these results will provide a new reference for developing convenient and rapid HSI equipment in the food and agricultural industry for direct and comprehensive quality inspection in markets in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shouyi886完成签到,获得积分10
刚刚
1秒前
1秒前
zhx发布了新的文献求助10
1秒前
Mandy发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
Jasper应助ee采纳,获得10
3秒前
4秒前
史shi完成签到,获得积分10
4秒前
燕麦大王发布了新的文献求助10
5秒前
kiki发布了新的文献求助10
5秒前
食杂砸发布了新的文献求助10
6秒前
皮皮大王完成签到 ,获得积分10
7秒前
光亮鹤发布了新的文献求助10
7秒前
万能图书馆应助迫切采纳,获得10
8秒前
衣锦夜行完成签到,获得积分10
8秒前
8秒前
进击的PhD应助小花采纳,获得30
8秒前
麻瓜完成签到,获得积分10
9秒前
9秒前
ksrcc发布了新的文献求助30
9秒前
mumumiao完成签到,获得积分10
10秒前
橙汁完成签到 ,获得积分10
10秒前
10秒前
007发布了新的文献求助10
10秒前
10秒前
11秒前
浮游应助xxxhhh采纳,获得10
11秒前
浮游应助xxxhhh采纳,获得10
12秒前
浮游应助xxxhhh采纳,获得10
12秒前
sevenhill应助xxxhhh采纳,获得10
12秒前
浮游应助xxxhhh采纳,获得10
12秒前
健壮的凉面完成签到,获得积分10
12秒前
浮游应助xxxhhh采纳,获得10
12秒前
香蕉诗蕊应助xxxhhh采纳,获得10
12秒前
12秒前
浮游应助xxxhhh采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642322
求助须知:如何正确求助?哪些是违规求助? 4758662
关于积分的说明 15017257
捐赠科研通 4800969
什么是DOI,文献DOI怎么找? 2566262
邀请新用户注册赠送积分活动 1524397
关于科研通互助平台的介绍 1483913