A transportation Revitalization index prediction model based on Spatial-Temporal attention mechanism

索引(排版) 机制(生物学) 计算机科学 工程类 人工智能 万维网 哲学 认识论
作者
Zhiqiang Lv,Zhaobin Ma,Feng Xia,Jianbo Li
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:61: 102519-102519 被引量:1
标识
DOI:10.1016/j.aei.2024.102519
摘要

The global outbreak of COVID-19 has had a substantial impact on various sectors worldwide, including the economy, healthcare, entertainment, policy formulation, and international relations, with the transportation industry being particularly hard-hit. To curb the widespread transmission of the virus, many regions globally have implemented policies and measures to restrict transportation. These actions not only directly affect the transportation industry but also further impose a severe impact on the economy and societal development of various areas. In this context, the Transportation Revitalization Index (TRI) becomes particularly important. It can evaluate the degree of recovery of city traffic conditions after the pandemic, and accurate prediction of TRI can help governments and decision-makers respond more precisely to the challenges that the pandemic brings to the transportation industry. However, existing research primarily focuses on the direct correlation between TRI change data and COVID-19 pandemic data, without fully considering the dynamic spatial correlation features and time dependency features that affect the nonlinear changes of TRI. In light of the above situation, this study proposes a Deep Spatial-Temporal prediction model based on the Attention Mechanism (DeepST-AM). The DeepST-AM deeply integrates historical TRI data with multivariate pandemic information and uses a spatial–temporal attention mechanism to capture the deep and complex spatial–temporal information of urban data. To more accurately capture the long-term complex features of TRI data, this paper designs a Gaussian temporal convolution model dedicated to TRI data. To validate the effectiveness of DeepST-AM, researchers used real data from 29 core cities in China as samples and compared the performance of DeepST-AM with existing multiple methods on TRI prediction tasks. The experimental results showed that compared to other methods, the DeepST-AM proposed in this paper has a significant advantage in the long-term prediction tasks of TRI in terms of performance evaluation, indicator prediction, etc. In summary, this research provides a more accurate and comprehensive prediction model for the traffic recovery status after the pandemic, hoping to provide strong support for future decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhu96114748发布了新的文献求助30
1秒前
1秒前
语言发布了新的文献求助10
1秒前
1秒前
WWXWWX发布了新的文献求助10
2秒前
脑洞疼应助Gracie采纳,获得30
4秒前
Dean应助凝雁采纳,获得50
4秒前
无情芷珊发布了新的文献求助10
5秒前
今后应助哈哈采纳,获得10
5秒前
谨慎的花生完成签到,获得积分10
5秒前
叶远望发布了新的文献求助10
6秒前
6秒前
6秒前
Edou发布了新的文献求助10
6秒前
6秒前
7秒前
李睿宇完成签到,获得积分10
7秒前
李爱国应助林一采纳,获得10
7秒前
qqa发布了新的文献求助10
7秒前
科目三应助灰灰采纳,获得10
8秒前
wadaxiwa完成签到,获得积分10
8秒前
8秒前
9秒前
快乐的胖子应助lonelylong采纳,获得50
9秒前
10秒前
zzx驳回了ding应助
10秒前
星辰大海应助和谐竺采纳,获得10
10秒前
k.o.发布了新的文献求助10
10秒前
袁寒烟发布了新的文献求助10
11秒前
gudaobo完成签到,获得积分10
11秒前
11秒前
Samuel完成签到,获得积分10
11秒前
WWXWWX发布了新的文献求助10
12秒前
NexusExplorer应助布丁仔采纳,获得10
12秒前
简单的月饼完成签到 ,获得积分10
12秒前
13秒前
Hope完成签到,获得积分10
13秒前
14秒前
小肥羊发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960156
求助须知:如何正确求助?哪些是违规求助? 4220717
关于积分的说明 13143984
捐赠科研通 4004520
什么是DOI,文献DOI怎么找? 2191509
邀请新用户注册赠送积分活动 1205736
关于科研通互助平台的介绍 1116915