亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A transportation Revitalization index prediction model based on Spatial-Temporal attention mechanism

索引(排版) 背景(考古学) 大数据 依赖关系(UML) 计算机科学 数据科学 人工智能 数据挖掘 地理 万维网 考古
作者
Zhiqiang Lv,Zhaobin Ma,Fengqian Xia,Jianbo Li
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:61: 102519-102519 被引量:20
标识
DOI:10.1016/j.aei.2024.102519
摘要

The global outbreak of COVID-19 has had a substantial impact on various sectors worldwide, including the economy, healthcare, entertainment, policy formulation, and international relations, with the transportation industry being particularly hard-hit. To curb the widespread transmission of the virus, many regions globally have implemented policies and measures to restrict transportation. These actions not only directly affect the transportation industry but also further impose a severe impact on the economy and societal development of various areas. In this context, the Transportation Revitalization Index (TRI) becomes particularly important. It can evaluate the degree of recovery of city traffic conditions after the pandemic, and accurate prediction of TRI can help governments and decision-makers respond more precisely to the challenges that the pandemic brings to the transportation industry. However, existing research primarily focuses on the direct correlation between TRI change data and COVID-19 pandemic data, without fully considering the dynamic spatial correlation features and time dependency features that affect the nonlinear changes of TRI. In light of the above situation, this study proposes a Deep Spatial-Temporal prediction model based on the Attention Mechanism (DeepST-AM). The DeepST-AM deeply integrates historical TRI data with multivariate pandemic information and uses a spatial–temporal attention mechanism to capture the deep and complex spatial–temporal information of urban data. To more accurately capture the long-term complex features of TRI data, this paper designs a Gaussian temporal convolution model dedicated to TRI data. To validate the effectiveness of DeepST-AM, researchers used real data from 29 core cities in China as samples and compared the performance of DeepST-AM with existing multiple methods on TRI prediction tasks. The experimental results showed that compared to other methods, the DeepST-AM proposed in this paper has a significant advantage in the long-term prediction tasks of TRI in terms of performance evaluation, indicator prediction, etc. In summary, this research provides a more accurate and comprehensive prediction model for the traffic recovery status after the pandemic, hoping to provide strong support for future decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
7秒前
nini完成签到,获得积分10
13秒前
张元东完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
21秒前
23秒前
淡淡土豆应助Nomb1采纳,获得10
26秒前
浮游应助Nomb1采纳,获得10
26秒前
浮游应助Nomb1采纳,获得10
26秒前
浮游应助Nomb1采纳,获得10
26秒前
orixero应助Nomb1采纳,获得10
26秒前
zilt1109发布了新的文献求助10
26秒前
Yuuw发布了新的文献求助10
27秒前
33秒前
嘟嘟嘟嘟发布了新的文献求助10
33秒前
40秒前
41秒前
Yuuw完成签到,获得积分10
41秒前
43秒前
Dawn发布了新的文献求助10
45秒前
琥珀三文发布了新的文献求助10
47秒前
52秒前
遇见馅儿饼完成签到,获得积分10
52秒前
华仔应助琥珀三文采纳,获得10
54秒前
顾矜应助遇见馅儿饼采纳,获得10
58秒前
1分钟前
负责代珊完成签到,获得积分20
1分钟前
Wiiing完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Wiiing发布了新的文献求助10
1分钟前
hyhyhyhy发布了新的文献求助10
1分钟前
负责代珊发布了新的文献求助10
1分钟前
1分钟前
老天师一巴掌完成签到 ,获得积分10
1分钟前
1分钟前
江旭晴发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509411
求助须知:如何正确求助?哪些是违规求助? 4604320
关于积分的说明 14489649
捐赠科研通 4539087
什么是DOI,文献DOI怎么找? 2487289
邀请新用户注册赠送积分活动 1469742
关于科研通互助平台的介绍 1441992