A transportation Revitalization index prediction model based on Spatial-Temporal attention mechanism

索引(排版) 机制(生物学) 计算机科学 工程类 人工智能 万维网 哲学 认识论
作者
Zhiqiang Lv,Zhaobin Ma,Feng Xia,Jianbo Li
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:61: 102519-102519 被引量:1
标识
DOI:10.1016/j.aei.2024.102519
摘要

The global outbreak of COVID-19 has had a substantial impact on various sectors worldwide, including the economy, healthcare, entertainment, policy formulation, and international relations, with the transportation industry being particularly hard-hit. To curb the widespread transmission of the virus, many regions globally have implemented policies and measures to restrict transportation. These actions not only directly affect the transportation industry but also further impose a severe impact on the economy and societal development of various areas. In this context, the Transportation Revitalization Index (TRI) becomes particularly important. It can evaluate the degree of recovery of city traffic conditions after the pandemic, and accurate prediction of TRI can help governments and decision-makers respond more precisely to the challenges that the pandemic brings to the transportation industry. However, existing research primarily focuses on the direct correlation between TRI change data and COVID-19 pandemic data, without fully considering the dynamic spatial correlation features and time dependency features that affect the nonlinear changes of TRI. In light of the above situation, this study proposes a Deep Spatial-Temporal prediction model based on the Attention Mechanism (DeepST-AM). The DeepST-AM deeply integrates historical TRI data with multivariate pandemic information and uses a spatial–temporal attention mechanism to capture the deep and complex spatial–temporal information of urban data. To more accurately capture the long-term complex features of TRI data, this paper designs a Gaussian temporal convolution model dedicated to TRI data. To validate the effectiveness of DeepST-AM, researchers used real data from 29 core cities in China as samples and compared the performance of DeepST-AM with existing multiple methods on TRI prediction tasks. The experimental results showed that compared to other methods, the DeepST-AM proposed in this paper has a significant advantage in the long-term prediction tasks of TRI in terms of performance evaluation, indicator prediction, etc. In summary, this research provides a more accurate and comprehensive prediction model for the traffic recovery status after the pandemic, hoping to provide strong support for future decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程哲瀚完成签到,获得积分10
刚刚
Brennan完成签到,获得积分10
1秒前
2秒前
2秒前
笨笨善若发布了新的文献求助10
3秒前
3秒前
4秒前
樘樘完成签到,获得积分10
4秒前
一个有点长的序完成签到 ,获得积分10
5秒前
孙淳完成签到,获得积分10
6秒前
6秒前
YYJ25发布了新的文献求助10
7秒前
Jzhang应助tmpstlml采纳,获得10
8秒前
微笑的南露完成签到 ,获得积分10
8秒前
豌豆关注了科研通微信公众号
8秒前
11秒前
笨笨善若完成签到,获得积分10
13秒前
hs完成签到,获得积分20
13秒前
ZHANGMANLI0422完成签到,获得积分10
13秒前
susu关注了科研通微信公众号
15秒前
DYuH23完成签到,获得积分10
16秒前
17秒前
爱静静应助DHL采纳,获得10
17秒前
17秒前
sunny661104完成签到 ,获得积分10
18秒前
简单完成签到 ,获得积分10
18秒前
尘林发布了新的文献求助10
18秒前
Z-先森完成签到,获得积分0
19秒前
苏源智发布了新的文献求助10
19秒前
伯赏诗霜完成签到,获得积分10
20秒前
NN应助LIn采纳,获得10
21秒前
21秒前
超级无敌学术苦瓜完成签到,获得积分10
21秒前
21秒前
Zn应助111采纳,获得10
22秒前
舒适静丹完成签到,获得积分10
23秒前
丽颖发布了新的文献求助10
24秒前
cui完成签到,获得积分10
24秒前
lixm完成签到,获得积分10
24秒前
yyyyy语言完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849