已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A transportation Revitalization index prediction model based on Spatial-Temporal attention mechanism

索引(排版) 背景(考古学) 大数据 依赖关系(UML) 计算机科学 数据科学 人工智能 数据挖掘 地理 万维网 考古
作者
Zhiqiang Lv,Zhaobin Ma,Fengqian Xia,Jianbo Li
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:61: 102519-102519 被引量:20
标识
DOI:10.1016/j.aei.2024.102519
摘要

The global outbreak of COVID-19 has had a substantial impact on various sectors worldwide, including the economy, healthcare, entertainment, policy formulation, and international relations, with the transportation industry being particularly hard-hit. To curb the widespread transmission of the virus, many regions globally have implemented policies and measures to restrict transportation. These actions not only directly affect the transportation industry but also further impose a severe impact on the economy and societal development of various areas. In this context, the Transportation Revitalization Index (TRI) becomes particularly important. It can evaluate the degree of recovery of city traffic conditions after the pandemic, and accurate prediction of TRI can help governments and decision-makers respond more precisely to the challenges that the pandemic brings to the transportation industry. However, existing research primarily focuses on the direct correlation between TRI change data and COVID-19 pandemic data, without fully considering the dynamic spatial correlation features and time dependency features that affect the nonlinear changes of TRI. In light of the above situation, this study proposes a Deep Spatial-Temporal prediction model based on the Attention Mechanism (DeepST-AM). The DeepST-AM deeply integrates historical TRI data with multivariate pandemic information and uses a spatial–temporal attention mechanism to capture the deep and complex spatial–temporal information of urban data. To more accurately capture the long-term complex features of TRI data, this paper designs a Gaussian temporal convolution model dedicated to TRI data. To validate the effectiveness of DeepST-AM, researchers used real data from 29 core cities in China as samples and compared the performance of DeepST-AM with existing multiple methods on TRI prediction tasks. The experimental results showed that compared to other methods, the DeepST-AM proposed in this paper has a significant advantage in the long-term prediction tasks of TRI in terms of performance evaluation, indicator prediction, etc. In summary, this research provides a more accurate and comprehensive prediction model for the traffic recovery status after the pandemic, hoping to provide strong support for future decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rrm发布了新的文献求助10
1秒前
任性迎南发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
乐乐应助坚定盈采纳,获得10
3秒前
3秒前
佟碧玉完成签到,获得积分10
5秒前
5秒前
5秒前
残剑月应助喜悦采纳,获得10
5秒前
111231发布了新的文献求助10
6秒前
年轻的钢笔完成签到 ,获得积分10
7秒前
juding发布了新的文献求助10
8秒前
浅音完成签到,获得积分10
10秒前
西因发布了新的文献求助10
11秒前
善学以致用应助111231采纳,获得10
12秒前
NexusExplorer应助111231采纳,获得10
12秒前
香蕉觅云应助111231采纳,获得10
12秒前
充电宝应助111231采纳,获得10
12秒前
14秒前
SSSSCCCCIIII完成签到,获得积分10
15秒前
wanci应助西因采纳,获得10
16秒前
CipherSage应助西因采纳,获得10
16秒前
李健的小迷弟应助空林采纳,获得10
17秒前
123别认出我完成签到,获得积分10
18秒前
Orange应助111231采纳,获得10
18秒前
领导范儿应助111231采纳,获得10
18秒前
研友_VZG7GZ应助111231采纳,获得10
18秒前
丘比特应助111231采纳,获得10
18秒前
Owen应助111231采纳,获得10
18秒前
香蕉觅云应助111231采纳,获得10
18秒前
JamesPei应助111231采纳,获得10
18秒前
共享精神应助111231采纳,获得10
18秒前
CipherSage应助111231采纳,获得10
18秒前
领导范儿应助111231采纳,获得10
18秒前
saaa发布了新的文献求助10
19秒前
欢喜的毛豆完成签到 ,获得积分10
21秒前
tumankol发布了新的文献求助10
21秒前
jz完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602939
求助须知:如何正确求助?哪些是违规求助? 4688095
关于积分的说明 14852467
捐赠科研通 4686448
什么是DOI,文献DOI怎么找? 2540318
邀请新用户注册赠送积分活动 1506902
关于科研通互助平台的介绍 1471458