A transportation Revitalization index prediction model based on Spatial-Temporal attention mechanism

索引(排版) 背景(考古学) 大数据 依赖关系(UML) 计算机科学 数据科学 人工智能 数据挖掘 地理 万维网 考古
作者
Zhiqiang Lv,Zhaobin Ma,Fengqian Xia,Jianbo Li
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:61: 102519-102519 被引量:20
标识
DOI:10.1016/j.aei.2024.102519
摘要

The global outbreak of COVID-19 has had a substantial impact on various sectors worldwide, including the economy, healthcare, entertainment, policy formulation, and international relations, with the transportation industry being particularly hard-hit. To curb the widespread transmission of the virus, many regions globally have implemented policies and measures to restrict transportation. These actions not only directly affect the transportation industry but also further impose a severe impact on the economy and societal development of various areas. In this context, the Transportation Revitalization Index (TRI) becomes particularly important. It can evaluate the degree of recovery of city traffic conditions after the pandemic, and accurate prediction of TRI can help governments and decision-makers respond more precisely to the challenges that the pandemic brings to the transportation industry. However, existing research primarily focuses on the direct correlation between TRI change data and COVID-19 pandemic data, without fully considering the dynamic spatial correlation features and time dependency features that affect the nonlinear changes of TRI. In light of the above situation, this study proposes a Deep Spatial-Temporal prediction model based on the Attention Mechanism (DeepST-AM). The DeepST-AM deeply integrates historical TRI data with multivariate pandemic information and uses a spatial–temporal attention mechanism to capture the deep and complex spatial–temporal information of urban data. To more accurately capture the long-term complex features of TRI data, this paper designs a Gaussian temporal convolution model dedicated to TRI data. To validate the effectiveness of DeepST-AM, researchers used real data from 29 core cities in China as samples and compared the performance of DeepST-AM with existing multiple methods on TRI prediction tasks. The experimental results showed that compared to other methods, the DeepST-AM proposed in this paper has a significant advantage in the long-term prediction tasks of TRI in terms of performance evaluation, indicator prediction, etc. In summary, this research provides a more accurate and comprehensive prediction model for the traffic recovery status after the pandemic, hoping to provide strong support for future decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色碧菡完成签到,获得积分10
刚刚
颖火虫发布了新的文献求助10
1秒前
zq完成签到,获得积分10
1秒前
舒适的初雪完成签到,获得积分10
1秒前
欧科狗完成签到,获得积分10
1秒前
qaqfdmmj发布了新的文献求助10
2秒前
Baize完成签到,获得积分10
2秒前
3秒前
科研通AI6应助hhc采纳,获得10
3秒前
3秒前
任性映秋发布了新的文献求助10
3秒前
走四方发布了新的文献求助20
3秒前
4秒前
刘娇娇完成签到,获得积分10
5秒前
ytzhang0587给SV的求助进行了留言
5秒前
未来科研大佬完成签到,获得积分20
5秒前
QQ完成签到 ,获得积分10
5秒前
5秒前
1911988020发布了新的文献求助10
5秒前
6秒前
最爱吃芒果完成签到,获得积分10
6秒前
orixero应助西西采纳,获得10
6秒前
zhaoyuepu完成签到,获得积分10
7秒前
Zkxxxx发布了新的文献求助10
8秒前
领导范儿应助Tian采纳,获得30
9秒前
小羊发布了新的文献求助10
9秒前
sean完成签到,获得积分10
10秒前
FashionBoy应助锐意采纳,获得10
10秒前
可爱的函函应助Sean采纳,获得10
10秒前
风屿完成签到,获得积分10
10秒前
fwi小白完成签到,获得积分10
10秒前
11秒前
bkagyin应助小灰灰采纳,获得10
11秒前
11秒前
12秒前
今后应助自然的含蕾采纳,获得10
13秒前
大个应助靓丽白桃采纳,获得10
13秒前
13秒前
科研通AI6应助啾啾采纳,获得20
13秒前
赘婿应助Serein采纳,获得10
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726