A transportation Revitalization index prediction model based on Spatial-Temporal attention mechanism

索引(排版) 机制(生物学) 计算机科学 工程类 人工智能 万维网 哲学 认识论
作者
Zhiqiang Lv,Zhaobin Ma,Feng Xia,Jianbo Li
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:61: 102519-102519 被引量:1
标识
DOI:10.1016/j.aei.2024.102519
摘要

The global outbreak of COVID-19 has had a substantial impact on various sectors worldwide, including the economy, healthcare, entertainment, policy formulation, and international relations, with the transportation industry being particularly hard-hit. To curb the widespread transmission of the virus, many regions globally have implemented policies and measures to restrict transportation. These actions not only directly affect the transportation industry but also further impose a severe impact on the economy and societal development of various areas. In this context, the Transportation Revitalization Index (TRI) becomes particularly important. It can evaluate the degree of recovery of city traffic conditions after the pandemic, and accurate prediction of TRI can help governments and decision-makers respond more precisely to the challenges that the pandemic brings to the transportation industry. However, existing research primarily focuses on the direct correlation between TRI change data and COVID-19 pandemic data, without fully considering the dynamic spatial correlation features and time dependency features that affect the nonlinear changes of TRI. In light of the above situation, this study proposes a Deep Spatial-Temporal prediction model based on the Attention Mechanism (DeepST-AM). The DeepST-AM deeply integrates historical TRI data with multivariate pandemic information and uses a spatial–temporal attention mechanism to capture the deep and complex spatial–temporal information of urban data. To more accurately capture the long-term complex features of TRI data, this paper designs a Gaussian temporal convolution model dedicated to TRI data. To validate the effectiveness of DeepST-AM, researchers used real data from 29 core cities in China as samples and compared the performance of DeepST-AM with existing multiple methods on TRI prediction tasks. The experimental results showed that compared to other methods, the DeepST-AM proposed in this paper has a significant advantage in the long-term prediction tasks of TRI in terms of performance evaluation, indicator prediction, etc. In summary, this research provides a more accurate and comprehensive prediction model for the traffic recovery status after the pandemic, hoping to provide strong support for future decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的高山完成签到,获得积分10
刚刚
syjssxwz完成签到,获得积分10
刚刚
1秒前
taishan发布了新的文献求助10
2秒前
kiluto发布了新的文献求助10
2秒前
3秒前
Jasper应助大帅哥采纳,获得10
4秒前
曾经的听云完成签到 ,获得积分10
4秒前
4秒前
4399com应助活力的初之采纳,获得20
6秒前
Owen应助Aurora采纳,获得10
7秒前
科研通AI2S应助oaim采纳,获得10
7秒前
7秒前
7秒前
9秒前
酷波er应助忆导采纳,获得10
9秒前
9秒前
9秒前
danielbbbb完成签到,获得积分20
10秒前
wjywjy完成签到,获得积分20
10秒前
寒冷河马完成签到,获得积分10
11秒前
天天快乐应助眨眼采纳,获得10
11秒前
希望天下0贩的0应助小何采纳,获得10
12秒前
12秒前
12秒前
小鞋完成签到,获得积分10
12秒前
归尘应助kiluto采纳,获得10
12秒前
12秒前
13秒前
13秒前
LabRat发布了新的文献求助10
14秒前
标致冬日发布了新的文献求助10
14秒前
丘比特应助典雅的俊驰采纳,获得10
15秒前
15秒前
16秒前
Aurora发布了新的文献求助10
17秒前
大帅哥发布了新的文献求助10
17秒前
FD发布了新的文献求助10
18秒前
fangyuan发布了新的文献求助10
18秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301863
求助须知:如何正确求助?哪些是违规求助? 2936392
关于积分的说明 8477564
捐赠科研通 2610180
什么是DOI,文献DOI怎么找? 1425019
科研通“疑难数据库(出版商)”最低求助积分说明 662239
邀请新用户注册赠送积分活动 646400