A transportation Revitalization index prediction model based on Spatial-Temporal attention mechanism

索引(排版) 背景(考古学) 大数据 依赖关系(UML) 计算机科学 数据科学 人工智能 数据挖掘 地理 万维网 考古
作者
Zhiqiang Lv,Zhaobin Ma,Fengqian Xia,Jianbo Li
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:61: 102519-102519 被引量:20
标识
DOI:10.1016/j.aei.2024.102519
摘要

The global outbreak of COVID-19 has had a substantial impact on various sectors worldwide, including the economy, healthcare, entertainment, policy formulation, and international relations, with the transportation industry being particularly hard-hit. To curb the widespread transmission of the virus, many regions globally have implemented policies and measures to restrict transportation. These actions not only directly affect the transportation industry but also further impose a severe impact on the economy and societal development of various areas. In this context, the Transportation Revitalization Index (TRI) becomes particularly important. It can evaluate the degree of recovery of city traffic conditions after the pandemic, and accurate prediction of TRI can help governments and decision-makers respond more precisely to the challenges that the pandemic brings to the transportation industry. However, existing research primarily focuses on the direct correlation between TRI change data and COVID-19 pandemic data, without fully considering the dynamic spatial correlation features and time dependency features that affect the nonlinear changes of TRI. In light of the above situation, this study proposes a Deep Spatial-Temporal prediction model based on the Attention Mechanism (DeepST-AM). The DeepST-AM deeply integrates historical TRI data with multivariate pandemic information and uses a spatial–temporal attention mechanism to capture the deep and complex spatial–temporal information of urban data. To more accurately capture the long-term complex features of TRI data, this paper designs a Gaussian temporal convolution model dedicated to TRI data. To validate the effectiveness of DeepST-AM, researchers used real data from 29 core cities in China as samples and compared the performance of DeepST-AM with existing multiple methods on TRI prediction tasks. The experimental results showed that compared to other methods, the DeepST-AM proposed in this paper has a significant advantage in the long-term prediction tasks of TRI in terms of performance evaluation, indicator prediction, etc. In summary, this research provides a more accurate and comprehensive prediction model for the traffic recovery status after the pandemic, hoping to provide strong support for future decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
Dali应助科研通管家采纳,获得10
刚刚
刚刚
spc68应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
ilihe应助科研通管家采纳,获得10
刚刚
BowieHuang应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
修狗儿发布了新的文献求助10
1秒前
1秒前
1秒前
上官若男应助ZYL采纳,获得10
1秒前
1秒前
xiaotian完成签到,获得积分10
1秒前
文耳东完成签到,获得积分10
2秒前
科研发布了新的文献求助10
2秒前
2秒前
爆米花应助FL采纳,获得10
2秒前
ruogu7完成签到,获得积分10
2秒前
2秒前
111发布了新的文献求助10
2秒前
小正发布了新的文献求助10
2秒前
sss完成签到,获得积分10
3秒前
FashionBoy应助QVQ采纳,获得10
3秒前
小川完成签到,获得积分10
3秒前
大个应助momosijia采纳,获得10
3秒前
YaRu应助凄凉山谷的风采纳,获得10
4秒前
赤恩完成签到,获得积分10
4秒前
4秒前
Elsa发布了新的文献求助10
5秒前
口农发布了新的文献求助10
5秒前
Lcccccc发布了新的文献求助10
5秒前
yee发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
GUKGO完成签到,获得积分10
6秒前
Sirene发布了新的文献求助10
6秒前
自信晟睿发布了新的文献求助10
7秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066