索引(排版)
机制(生物学)
计算机科学
工程类
人工智能
万维网
哲学
认识论
作者
Zhiqiang Lv,Zhaobin Ma,Feng Xia,Jianbo Li
标识
DOI:10.1016/j.aei.2024.102519
摘要
The global outbreak of COVID-19 has had a substantial impact on various sectors worldwide, including the economy, healthcare, entertainment, policy formulation, and international relations, with the transportation industry being particularly hard-hit. To curb the widespread transmission of the virus, many regions globally have implemented policies and measures to restrict transportation. These actions not only directly affect the transportation industry but also further impose a severe impact on the economy and societal development of various areas. In this context, the Transportation Revitalization Index (TRI) becomes particularly important. It can evaluate the degree of recovery of city traffic conditions after the pandemic, and accurate prediction of TRI can help governments and decision-makers respond more precisely to the challenges that the pandemic brings to the transportation industry. However, existing research primarily focuses on the direct correlation between TRI change data and COVID-19 pandemic data, without fully considering the dynamic spatial correlation features and time dependency features that affect the nonlinear changes of TRI. In light of the above situation, this study proposes a Deep Spatial-Temporal prediction model based on the Attention Mechanism (DeepST-AM). The DeepST-AM deeply integrates historical TRI data with multivariate pandemic information and uses a spatial–temporal attention mechanism to capture the deep and complex spatial–temporal information of urban data. To more accurately capture the long-term complex features of TRI data, this paper designs a Gaussian temporal convolution model dedicated to TRI data. To validate the effectiveness of DeepST-AM, researchers used real data from 29 core cities in China as samples and compared the performance of DeepST-AM with existing multiple methods on TRI prediction tasks. The experimental results showed that compared to other methods, the DeepST-AM proposed in this paper has a significant advantage in the long-term prediction tasks of TRI in terms of performance evaluation, indicator prediction, etc. In summary, this research provides a more accurate and comprehensive prediction model for the traffic recovery status after the pandemic, hoping to provide strong support for future decisions.
科研通智能强力驱动
Strongly Powered by AbleSci AI