新颖性
概念设计
设计语言
计算机科学
工程设计过程
领域(数学分析)
多样性(政治)
软件工程
系统工程
工程类
人机交互
程序设计语言
心理学
机械工程
社会心理学
数学分析
数学
社会学
人类学
作者
裕哉 川田,Ang Liu,Yun Dai,Keisuke Nagato,Masayuki Nakao
出处
期刊:CIRP Annals
[Elsevier]
日期:2024-01-01
卷期号:73 (1): 85-88
被引量:6
标识
DOI:10.1016/j.cirp.2024.04.062
摘要
Recent advancements in large language models (LLMs) demonstrate great potential in supporting engineering design, especially conceptual design. Prompt engineering plays an important role in facilitating designer-LLM collaboration in conceptual design. This paper proposes a new classification scheme that categorizes design-specific prompts into multiple classes. It also introduces different patterns for synthesizing design prompts, being grounded in the theoretical foundations of prompt engineering and domain-specific design methodology. A design experiment, utilizing ChatGPT, was conducted to investigate the impacts of different syntheses of design prompts on the effectiveness of LLM in concept generation, as measured by the metrics of novelty and diversity.
科研通智能强力驱动
Strongly Powered by AbleSci AI