Contribution of Ti-Doping to the Cyclic Stability of LiFe0.6Mn0.4PO4/C

兴奋剂 分析化学(期刊) 介电谱 电化学 共沉淀 化学 无定形固体 法拉第效率 阴极 循环伏安法 材料科学 物理化学 无机化学 结晶学 电极 光电子学 色谱法
作者
Jing Peng,Zhen Li,Yang You,Jingjun Liu,Lianghua Wang,Jingyue Xu,Shengwen Ou,Mingliang Yuan
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:63 (18): 8228-8238 被引量:7
标识
DOI:10.1021/acs.iecr.4c00307
摘要

Li(Fe0.6Mn0.4)1–xTixPO4/C cathode materials, with x values of 0, 0.01, 0.02, 0.03, and 0.04, were fabricated through a dual-stage synthesis process, incorporating both coprecipitation and high-temperature solid-phase techniques. The composition, microstructure, and surface morphology of these materials were thoroughly characterized using a suite of analytical techniques. These analyses confirmed the successful doping of Ti ions into the olivine lattice, resulting in a decrease in unit cell volume and the formation of an amorphous carbon layer on the particles' surfaces, which also improved particle dispersion. The electrochemical performance of the Li(Fe0.6Mn0.4)1–xTixPO4/C samples was assessed using techniques including constant current charge–discharge testing, cyclic voltammetry, and electrochemical impedance spectroscopy. The findings showed that Ti-doping markedly diminishes potential polarization in these materials and the strong Ti–O coordination suppresses the Jahn–Teller effect of Mn3+, effectively enhancing the stability and lithium-ion diffusion rate of the material. Additionally, density functional theory (DFT) calculations were conducted to assess the impact of Ti-doping on LFMP. The findings reveal that Ti-doping reduces the bandgap of the material and increases the bond length of Li–O, thereby further confirming that Ti-doping can enhance electronic conductivity. Among them, the Li(Fe0.6Mn0.4)1–xTixPO4/C-3%Ti cathode material exhibited the best electrochemical performance. The optimized sample demonstrated a specific discharge capacity of 163.53 mAh·g–1 at 0.1C, accompanied by an initial coulombic efficiency of 93.18%. At 1C, it provided a capacity of 140.59 mAh·g–1, sustaining a capacity retention of 93.58% after 500 cycles, and delivered a discharge capacity of 94.08 mAh·g–1 at 5C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼雷发布了新的文献求助10
刚刚
兔子发布了新的文献求助10
刚刚
刚刚
田様应助coffee采纳,获得10
1秒前
1秒前
专注鼠标完成签到,获得积分10
1秒前
LingYing完成签到 ,获得积分10
2秒前
cheche完成签到,获得积分10
3秒前
liushun完成签到,获得积分10
3秒前
caoyy发布了新的文献求助10
3秒前
zzt发布了新的文献求助10
4秒前
6秒前
6秒前
章家炜发布了新的文献求助10
7秒前
脑洞疼应助xfxx采纳,获得10
7秒前
wanci应助茶博士采纳,获得10
7秒前
所所应助YYT采纳,获得10
8秒前
匿名网友完成签到 ,获得积分10
8秒前
雪白雍完成签到,获得积分10
9秒前
maomao完成签到,获得积分10
9秒前
我是笨蛋完成签到 ,获得积分10
11秒前
酷波er应助caoyy采纳,获得10
12秒前
12秒前
Dreamsli发布了新的文献求助10
13秒前
有只小狗完成签到,获得积分10
14秒前
飞飞完成签到,获得积分10
15秒前
豆dou发布了新的文献求助10
15秒前
Mannone完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
13679165979完成签到,获得积分10
16秒前
Jocelyn7关注了科研通微信公众号
17秒前
Jzhang应助赵小可可可可采纳,获得10
17秒前
wls完成签到 ,获得积分10
18秒前
CC完成签到,获得积分10
18秒前
19秒前
鬼才之眼完成签到 ,获得积分10
19秒前
xfxx发布了新的文献求助10
20秒前
章家炜完成签到,获得积分20
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824