Exploring the injury severity of vulnerable road users to truck crashes by ensemble learning

卡车 运输工程 毒物控制 伤害预防 职业安全与健康 人为因素与人体工程学 法律工程学 计算机科学 工程类 环境卫生 医学 汽车工程 病理
作者
Fulu Wei,Peixiang Xu,Yongqing Guo,Zhenyu Wang
出处
期刊:Journal of Transportation Safety & Security [Taylor & Francis]
卷期号:: 1-24
标识
DOI:10.1080/19439962.2024.2311408
摘要

Large numbers of vulnerable road users were killed in truck crashes. In this study, ensemble machine learning models are constructed to predict the injury severity of the vulnerable road user (VRU) to truck (VRU-T) crashes. The study is based on the five years (2017–2021) of VRU-T crash data in the Shandong Province from the Center for Accident Research in Zibo. The injury severity of VRUs is estimated using machine learning ensemble models- Stacking, Voting, Random Forest, and eXtreme Gradient Boosting (XGBoost). Compared to the other three models, the Stacking has excellent predictive performance on the pedestrian and non-motorized datasets. Then, SHapley Additive exPlanations and Partial Dependence Plot box are introduced to analyze risk factors qualitatively and quantitatively. The innovative findings of this study are as follows: (1) as VRUs age, they are more likely to be seriously injured in truck crashes; (2) middle-aged truck drivers and truck drivers with medium driving experience increase the probability of VRUs being severe and fatally injured in truck crashes; (3) crashes involving heavy trucks, under signalized crossing, or on the national and provincial road and urban road have a positive effect on the crash severity for cyclists, and E-Bike riders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
QF发布了新的文献求助10
1秒前
jameslee04完成签到,获得积分10
2秒前
完美世界应助念姬采纳,获得10
2秒前
Anna完成签到 ,获得积分10
2秒前
4秒前
陆柒完成签到,获得积分10
4秒前
欢呼的飞荷完成签到 ,获得积分10
4秒前
asdf应助可乐采纳,获得10
5秒前
干净的芮完成签到,获得积分10
5秒前
6秒前
渊思发布了新的文献求助10
8秒前
9秒前
陆柒发布了新的文献求助30
10秒前
ww发布了新的文献求助10
11秒前
Lucas应助吕不韦采纳,获得10
11秒前
小旭不会飞完成签到,获得积分10
12秒前
13秒前
boli完成签到,获得积分10
13秒前
69发布了新的文献求助10
17秒前
daidai完成签到,获得积分10
18秒前
18秒前
22秒前
寂寞圣贤发布了新的文献求助10
22秒前
feifei完成签到 ,获得积分10
23秒前
26秒前
Nathan发布了新的文献求助10
27秒前
烟波钓客发布了新的文献求助200
29秒前
将将完成签到,获得积分10
29秒前
30秒前
悟空完成签到,获得积分10
31秒前
烟花应助李7采纳,获得10
31秒前
CipherSage应助陆柒采纳,获得10
33秒前
墩墩发布了新的文献求助10
33秒前
33秒前
尤珩完成签到,获得积分10
35秒前
Sirius潘圈圈关注了科研通微信公众号
36秒前
lbx完成签到,获得积分10
39秒前
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966324
求助须知:如何正确求助?哪些是违规求助? 3511740
关于积分的说明 11159404
捐赠科研通 3246305
什么是DOI,文献DOI怎么找? 1793370
邀请新用户注册赠送积分活动 874364
科研通“疑难数据库(出版商)”最低求助积分说明 804357