Trusted semi-supervised multi-view classification with contrastive learning

计算机科学 人工智能 机器学习 自然语言处理
作者
Xiaoli Wang,Yongli Wang,Yupeng Wang,Anqi Huang,Jun Liu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8268-8278 被引量:1
标识
DOI:10.1109/tmm.2024.3379079
摘要

Semi-supervised multi-view learning is a remarkable but challenging task. Existing semi-supervised multi-view classification (SMVC) approaches mainly focus on performance improvement while ignoring decision reliability, which limits their deployment in safety-critical applications. Although several trusted multi-view classification methods are proposed recently, they rely on manual annotations. Therefore, this work emphasizes trusted multi-view classification learning under semi-supervised conditions. Different from existing SMVC methods, this work jointly models class probabilities and uncertainties based on evidential deep learning to formulate view-specific opinions. Moreover, unlike previous works that explore cross-view consistency in a single schema, this work proposes a multi-level consistency constraint. Specifically, we explore instance-level consistency on the view-specific representation space and category-level consistency on opinions from multiple views. Our proposed trusted graph-based contrastive loss nicely establishes the relationship between joint opinions and view-specific representations, which enables view-specific representations to enjoy a good manifold to improve classification performance. Overall, the proposed approach provides reliable and superior semi-supervised multiview classification decisions. Extensive experiments demonstrate the effectiveness, reliability and robustness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助maq采纳,获得30
1秒前
小北发布了新的文献求助10
2秒前
2秒前
樱悼柳雪完成签到,获得积分10
2秒前
ncc发布了新的文献求助30
3秒前
酷波er应助魔幻的泽洋采纳,获得10
3秒前
夏xia发布了新的文献求助10
4秒前
千秋梧完成签到,获得积分10
4秒前
4秒前
5秒前
英姑应助安河桥采纳,获得10
5秒前
科目三应助勤恳新竹采纳,获得10
6秒前
坏坏的快乐完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得30
8秒前
李健应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
ED应助科研通管家采纳,获得10
8秒前
ZJ发布了新的文献求助10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得30
8秒前
今后应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
酷炫翠桃应助科研通管家采纳,获得10
8秒前
雷家发布了新的文献求助10
8秒前
ED应助科研通管家采纳,获得10
9秒前
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
刘兆海应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
彭于彦祖应助科研通管家采纳,获得30
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512100
关于积分的说明 11161688
捐赠科研通 3246938
什么是DOI,文献DOI怎么找? 1793609
邀请新用户注册赠送积分活动 874495
科研通“疑难数据库(出版商)”最低求助积分说明 804420