Validation of an automated machine learning algorithm for the detection and analysis of cerebral aneurysms

医学 神经组阅片室 神经放射学家 接收机工作特性 卷积神经网络 算法 动脉瘤 人工智能 神经影像学 放射科 数据集 机器学习 核医学 神经学 磁共振成像 内科学 计算机科学 精神科
作者
Marco Colasurdo,Daphna Shalev,Ariadna Robledo,Viren Vasandani,Zean Aaron Luna,A. Venketeshwer Rao,Roberto Garcı́a,Gautam Edhayan,Visish M. Srinivasan,Sunil A Sheth,Yoni Donner,Orin Bibas,Nicole Limzider,Hashem Shaltoni,Peter Kan
出处
期刊:Journal of Neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:: 1-8 被引量:2
标识
DOI:10.3171/2023.1.jns222304
摘要

OBJECTIVE Machine learning algorithms have shown groundbreaking results in neuroimaging. The authors herein evaluated the performance of a newly developed convolutional neural network (CNN) to detect and analyze intracranial aneurysms (IAs) on CTA. METHODS Consecutive patients with CTA studies between January 2015 and July 2021 at a single center were identified. The ground truth determination of cerebral aneurysm presence or absence was made from the neuroradiology report. The primary outcome was the performance of the CNN in detecting IAs in an external validation set, measured using area under the receiver operating characteristic curve statistics. Secondary outcomes included accuracy for location and size measurement. RESULTS The independent validation imaging data set consisted of 400 patients with CTA studies, median age 40 years (IQR 34 years) and 141 (35.3%) of whom were male; 193 patients (48.3%) had a diagnosis of IA on neuroradiologist evaluation. The median maximum IA diameter was 3.7 mm (IQR 2.5 mm). In the independent validation imaging data set, the CNN performed well with 93.8% sensitivity (95% CI 0.87–0.98), 94.2% specificity (95% CI 0.90–0.97), and a positive predictive value of 88.2% (95% CI 0.80–0.94) in the subgroup with an IA diameter ≥ 4 mm. CONCLUSIONS The described Viz.ai Aneurysm CNN performed well in identifying the presence or absence of IAs in an independent validation imaging set. Further studies are necessary to investigate the impact of the software on detection rates in a real-world setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缘稚完成签到,获得积分10
1秒前
张楠完成签到 ,获得积分10
1秒前
1秒前
Vroom驳回了全球应助
1秒前
指定能行完成签到,获得积分10
2秒前
风趣姿完成签到,获得积分10
2秒前
李利利发布了新的文献求助10
2秒前
Jasper应助RR采纳,获得10
3秒前
4秒前
ding应助菠萝头子采纳,获得10
4秒前
stonerdog发布了新的文献求助10
4秒前
蒲公英完成签到,获得积分20
5秒前
5秒前
吉良完成签到,获得积分10
6秒前
6秒前
所所应助彭凯采纳,获得10
7秒前
ca0ca0发布了新的文献求助10
7秒前
Singularity应助排骨炖豆角采纳,获得20
7秒前
8秒前
wei发布了新的文献求助10
9秒前
9秒前
CHH发布了新的文献求助10
9秒前
川川发布了新的文献求助10
9秒前
wanci应助Uranus采纳,获得10
10秒前
bkagyin应助超级的平卉采纳,获得10
10秒前
勤奋梦曼完成签到,获得积分20
11秒前
12秒前
stonerdog完成签到,获得积分10
12秒前
lz应助bedrock采纳,获得10
12秒前
祁郁郁发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
伶俐的铁身完成签到,获得积分10
15秒前
朱广权完成签到,获得积分10
15秒前
tufuczy完成签到,获得积分10
16秒前
16秒前
大模型应助CHH采纳,获得10
17秒前
dada发布了新的文献求助10
17秒前
18秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170673
求助须知:如何正确求助?哪些是违规求助? 2821714
关于积分的说明 7936172
捐赠科研通 2482144
什么是DOI,文献DOI怎么找? 1322341
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608