Load Optimization Scheduling of Chip Mounter Based on Hybrid Adaptive Optimization Algorithm

蚁群优化算法 炸薯条 调度(生产过程) 计算机科学 数学优化 趋同(经济学) 工作量 算法 实时计算 数学 经济增长 电信 操作系统 经济
作者
Xuesong Yan,Hao Zuo,Chengyu Hu,Wenyin Gong,Victor S. Sheng
出处
期刊:Complex system modeling and simulation [Institute of Electrical and Electronics Engineers]
卷期号:3 (1): 1-11 被引量:9
标识
DOI:10.23919/csms.2022.0026
摘要

A chip mounter is the core equipment in the production line of the surface-mount technology, which is responsible for finishing the mount operation. It is the most complex and time-consuming stage in the production process. Therefore, it is of great significance to optimize the load balance and mounting efficiency of the chip mounter and improve the mounting efficiency of the production line. In this study, according to the specific type of chip mounter in the actual production line of a company, a maximum and minimum model is established to minimize the maximum cycle time of the chip mounter in the production line. The production efficiency of the production line can be improved by optimizing the workload scheduling of each chip mounter. On this basis, a hybrid adaptive optimization algorithm is proposed to solve the load scheduling problem of the mounter. The hybrid algorithm is a hybrid of an adaptive genetic algorithm and the improved ant colony algorithm. It combines the advantages of the two algorithms and improves their global search ability and convergence speed. The experimental results show that the proposed hybrid optimization algorithm has a good optimization effect and convergence in the load scheduling problem of chip mounters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烂漫耳机完成签到,获得积分10
1秒前
木槿完成签到,获得积分10
1秒前
科研通AI6应助王志新采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
子车茗应助科研通管家采纳,获得30
2秒前
柏林寒冬应助科研通管家采纳,获得10
2秒前
2秒前
活力忆雪应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Linos应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
Akim应助单纯的爆米花采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得50
2秒前
香蕉觅云应助科研通管家采纳,获得30
2秒前
Linos应助科研通管家采纳,获得10
2秒前
受伤毛豆应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
李爱国应助阿猫采纳,获得10
2秒前
2秒前
Hilda007应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
科研通AI6应助剧院的饭桶采纳,获得10
3秒前
无极微光应助现代的青寒采纳,获得20
3秒前
米奇完成签到 ,获得积分10
3秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836