已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MCANet: shared-weight-based MultiheadCrossAttention network for drug–target interaction prediction

过度拟合 计算机科学 稳健性(进化) 人工智能 机器学习 药物靶点 机制(生物学) 代表(政治) 特征(语言学) 数据挖掘 人工神经网络 生物化学 医学 政治 药理学 基因 认识论 哲学 语言学 化学 法学 政治学
作者
Jilong Bian,Xi Zhang,Xiying Zhang,Dali Xu,Guohua Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:18
标识
DOI:10.1093/bib/bbad082
摘要

Abstract Accurate and effective drug–target interaction (DTI) prediction can greatly shorten the drug development lifecycle and reduce the cost of drug development. In the deep-learning-based paradigm for predicting DTI, robust drug and protein feature representations and their interaction features play a key role in improving the accuracy of DTI prediction. Additionally, the class imbalance problem and the overfitting problem in the drug–target dataset can also affect the prediction accuracy, and reducing the consumption of computational resources and speeding up the training process are also critical considerations. In this paper, we propose shared-weight-based MultiheadCrossAttention, a precise and concise attention mechanism that can establish the association between target and drug, making our models more accurate and faster. Then, we use the cross-attention mechanism to construct two models: MCANet and MCANet-B. In MCANet, the cross-attention mechanism is used to extract the interaction features between drugs and proteins for improving the feature representation ability of drugs and proteins, and the PolyLoss loss function is applied to alleviate the overfitting problem and the class imbalance problem in the drug–target dataset. In MCANet-B, the robustness of the model is improved by combining multiple MCANet models and prediction accuracy further increases. We train and evaluate our proposed methods on six public drug–target datasets and achieve state-of-the-art results. In comparison with other baselines, MCANet saves considerable computational resources while maintaining accuracy in the leading position; however, MCANet-B greatly improves prediction accuracy by combining multiple models while maintaining a balance between computational resource consumption and prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
肖恩发布了新的文献求助10
3秒前
4秒前
欧力蟹关注了科研通微信公众号
4秒前
4秒前
5秒前
5秒前
研友_VZG7GZ应助包容的绿蕊采纳,获得10
5秒前
6秒前
尹静涵完成签到 ,获得积分10
7秒前
7秒前
吉良吉影发布了新的文献求助10
8秒前
nitsuj发布了新的文献求助10
9秒前
10秒前
11秒前
木木发布了新的文献求助10
11秒前
南巷晚风发布了新的文献求助10
12秒前
moderater完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
20秒前
21秒前
21秒前
微笑的忆枫完成签到 ,获得积分10
21秒前
胜似闲庭信步完成签到,获得积分10
22秒前
Evan完成签到 ,获得积分10
24秒前
25秒前
czh驳回了Hello应助
25秒前
grass发布了新的文献求助10
26秒前
包容的绿蕊完成签到,获得积分20
28秒前
29秒前
俏皮白云完成签到 ,获得积分10
30秒前
清茶旧友完成签到,获得积分10
32秒前
dd发布了新的文献求助10
32秒前
HighFeng_Lei发布了新的文献求助10
33秒前
33秒前
nitsuj发布了新的文献求助10
33秒前
我是老大应助木木采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422