MCANet: shared-weight-based MultiheadCrossAttention network for drug–target interaction prediction

过度拟合 计算机科学 稳健性(进化) 人工智能 机器学习 药物靶点 机制(生物学) 代表(政治) 特征(语言学) 数据挖掘 人工神经网络 生物化学 医学 政治 药理学 基因 认识论 哲学 语言学 化学 法学 政治学
作者
Jilong Bian,Xi Zhang,Xiying Zhang,Dali Xu,Guohua Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:7
标识
DOI:10.1093/bib/bbad082
摘要

Abstract Accurate and effective drug–target interaction (DTI) prediction can greatly shorten the drug development lifecycle and reduce the cost of drug development. In the deep-learning-based paradigm for predicting DTI, robust drug and protein feature representations and their interaction features play a key role in improving the accuracy of DTI prediction. Additionally, the class imbalance problem and the overfitting problem in the drug–target dataset can also affect the prediction accuracy, and reducing the consumption of computational resources and speeding up the training process are also critical considerations. In this paper, we propose shared-weight-based MultiheadCrossAttention, a precise and concise attention mechanism that can establish the association between target and drug, making our models more accurate and faster. Then, we use the cross-attention mechanism to construct two models: MCANet and MCANet-B. In MCANet, the cross-attention mechanism is used to extract the interaction features between drugs and proteins for improving the feature representation ability of drugs and proteins, and the PolyLoss loss function is applied to alleviate the overfitting problem and the class imbalance problem in the drug–target dataset. In MCANet-B, the robustness of the model is improved by combining multiple MCANet models and prediction accuracy further increases. We train and evaluate our proposed methods on six public drug–target datasets and achieve state-of-the-art results. In comparison with other baselines, MCANet saves considerable computational resources while maintaining accuracy in the leading position; however, MCANet-B greatly improves prediction accuracy by combining multiple models while maintaining a balance between computational resource consumption and prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ann发布了新的文献求助10
1秒前
科研66666完成签到 ,获得积分10
3秒前
受伤的冰海完成签到 ,获得积分10
4秒前
没有昵称完成签到,获得积分10
6秒前
future完成签到 ,获得积分10
13秒前
喂喂喂完成签到 ,获得积分10
16秒前
默默的大腚完成签到 ,获得积分10
16秒前
贾舒涵完成签到,获得积分10
19秒前
Jason完成签到 ,获得积分20
19秒前
20秒前
斯文败类应助云朵上的鱼采纳,获得10
21秒前
destiny完成签到 ,获得积分10
22秒前
23秒前
彭笑笑完成签到 ,获得积分10
24秒前
xjcy应助smm采纳,获得10
26秒前
ss_hHe发布了新的文献求助10
26秒前
28秒前
yiheng发布了新的文献求助10
29秒前
33秒前
liudi123456完成签到,获得积分10
34秒前
35秒前
35秒前
yiheng完成签到,获得积分10
36秒前
清爽尔安发布了新的文献求助10
39秒前
小王完成签到,获得积分10
41秒前
zhangxin发布了新的文献求助30
42秒前
42秒前
43秒前
云朵上的鱼完成签到,获得积分10
43秒前
博雅雅雅雅雅完成签到,获得积分10
44秒前
45秒前
一轮明月完成签到 ,获得积分10
46秒前
47秒前
syj发布了新的文献求助10
50秒前
如意红酒完成签到 ,获得积分10
52秒前
52秒前
顾文强完成签到,获得积分10
54秒前
齐天完成签到 ,获得积分10
54秒前
朴实初夏完成签到 ,获得积分10
55秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137561
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787276
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300093
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023