MCANet: shared-weight-based MultiheadCrossAttention network for drug–target interaction prediction

过度拟合 计算机科学 稳健性(进化) 人工智能 机器学习 药物靶点 机制(生物学) 代表(政治) 特征(语言学) 数据挖掘 人工神经网络 生物化学 医学 政治 药理学 基因 认识论 哲学 语言学 化学 法学 政治学
作者
Jilong Bian,Xi Zhang,Xiying Zhang,Dali Xu,Guohua Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:18
标识
DOI:10.1093/bib/bbad082
摘要

Abstract Accurate and effective drug–target interaction (DTI) prediction can greatly shorten the drug development lifecycle and reduce the cost of drug development. In the deep-learning-based paradigm for predicting DTI, robust drug and protein feature representations and their interaction features play a key role in improving the accuracy of DTI prediction. Additionally, the class imbalance problem and the overfitting problem in the drug–target dataset can also affect the prediction accuracy, and reducing the consumption of computational resources and speeding up the training process are also critical considerations. In this paper, we propose shared-weight-based MultiheadCrossAttention, a precise and concise attention mechanism that can establish the association between target and drug, making our models more accurate and faster. Then, we use the cross-attention mechanism to construct two models: MCANet and MCANet-B. In MCANet, the cross-attention mechanism is used to extract the interaction features between drugs and proteins for improving the feature representation ability of drugs and proteins, and the PolyLoss loss function is applied to alleviate the overfitting problem and the class imbalance problem in the drug–target dataset. In MCANet-B, the robustness of the model is improved by combining multiple MCANet models and prediction accuracy further increases. We train and evaluate our proposed methods on six public drug–target datasets and achieve state-of-the-art results. In comparison with other baselines, MCANet saves considerable computational resources while maintaining accuracy in the leading position; however, MCANet-B greatly improves prediction accuracy by combining multiple models while maintaining a balance between computational resource consumption and prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助隐形的迎南采纳,获得10
1秒前
Liz完成签到 ,获得积分10
2秒前
Wangdx发布了新的文献求助10
3秒前
tiantian8715发布了新的文献求助10
3秒前
3秒前
默默洋葱发布了新的文献求助10
5秒前
鸫鸫完成签到,获得积分10
6秒前
松栗奶芙hh完成签到,获得积分10
6秒前
傲娇的康乃馨完成签到,获得积分10
8秒前
小二郎应助efls采纳,获得10
9秒前
10秒前
海岢完成签到,获得积分10
12秒前
13秒前
osmanthus完成签到,获得积分10
13秒前
tiantian8715完成签到,获得积分10
14秒前
17秒前
18秒前
18秒前
搜集达人应助lhx采纳,获得10
18秒前
19秒前
迷路海蓝发布了新的文献求助20
19秒前
不知道完成签到,获得积分10
19秒前
在水一方应助soshio采纳,获得10
19秒前
阿燕完成签到 ,获得积分10
20秒前
duanyimeng发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
三岁发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
Emma应助最美夕阳红采纳,获得10
24秒前
kkk完成签到,获得积分10
25秒前
拼搏诗筠完成签到,获得积分10
25秒前
小情绪发布了新的文献求助10
26秒前
GS_lly完成签到,获得积分20
26秒前
mingming发布了新的文献求助10
27秒前
jc发布了新的文献求助10
27秒前
28秒前
星辰大海应助杭谷波采纳,获得10
28秒前
上官若男应助平常的忆文采纳,获得30
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959309
求助须知:如何正确求助?哪些是违规求助? 3505589
关于积分的说明 11124738
捐赠科研通 3237345
什么是DOI,文献DOI怎么找? 1789116
邀请新用户注册赠送积分活动 871544
科研通“疑难数据库(出版商)”最低求助积分说明 802844