MCANet: shared-weight-based MultiheadCrossAttention network for drug–target interaction prediction

过度拟合 计算机科学 稳健性(进化) 人工智能 机器学习 药物靶点 机制(生物学) 代表(政治) 特征(语言学) 数据挖掘 人工神经网络 生物化学 医学 政治 药理学 基因 认识论 哲学 语言学 化学 法学 政治学
作者
Jilong Bian,Xi Zhang,Xiying Zhang,Dali Xu,Guohua Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:18
标识
DOI:10.1093/bib/bbad082
摘要

Abstract Accurate and effective drug–target interaction (DTI) prediction can greatly shorten the drug development lifecycle and reduce the cost of drug development. In the deep-learning-based paradigm for predicting DTI, robust drug and protein feature representations and their interaction features play a key role in improving the accuracy of DTI prediction. Additionally, the class imbalance problem and the overfitting problem in the drug–target dataset can also affect the prediction accuracy, and reducing the consumption of computational resources and speeding up the training process are also critical considerations. In this paper, we propose shared-weight-based MultiheadCrossAttention, a precise and concise attention mechanism that can establish the association between target and drug, making our models more accurate and faster. Then, we use the cross-attention mechanism to construct two models: MCANet and MCANet-B. In MCANet, the cross-attention mechanism is used to extract the interaction features between drugs and proteins for improving the feature representation ability of drugs and proteins, and the PolyLoss loss function is applied to alleviate the overfitting problem and the class imbalance problem in the drug–target dataset. In MCANet-B, the robustness of the model is improved by combining multiple MCANet models and prediction accuracy further increases. We train and evaluate our proposed methods on six public drug–target datasets and achieve state-of-the-art results. In comparison with other baselines, MCANet saves considerable computational resources while maintaining accuracy in the leading position; however, MCANet-B greatly improves prediction accuracy by combining multiple models while maintaining a balance between computational resource consumption and prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
竹子完成签到,获得积分10
刚刚
MAKEYF完成签到 ,获得积分10
刚刚
1秒前
Owen应助猪猪hero采纳,获得10
1秒前
2秒前
CipherSage应助海棠yiyi采纳,获得50
3秒前
Khr1stINK发布了新的文献求助10
3秒前
3秒前
脑洞疼应助卡卡采纳,获得10
3秒前
3秒前
Rrr发布了新的文献求助10
4秒前
科研通AI5应助zmy采纳,获得10
5秒前
William鉴哲发布了新的文献求助10
5秒前
情怀应助只道寻常采纳,获得10
6秒前
6秒前
cyy完成签到,获得积分20
6秒前
orixero应助小庄采纳,获得10
7秒前
8秒前
侦察兵发布了新的文献求助10
8秒前
司徒元瑶完成签到 ,获得积分10
8秒前
梓榆发布了新的文献求助10
8秒前
8秒前
sweetbearm应助通~采纳,获得10
8秒前
斯文败类应助成就映秋采纳,获得10
9秒前
123456完成签到,获得积分10
9秒前
9秒前
moonlin完成签到 ,获得积分10
9秒前
10秒前
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
12秒前
wanci应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
思源应助蟹黄堡不打折采纳,获得10
12秒前
Lily应助科研通管家采纳,获得40
12秒前
敬老院N号应助科研通管家采纳,获得30
12秒前
zzzq应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794