Micro-flow investigation on laying process in Al2O3 stereolithography forming

机械 格子Boltzmann方法 流量(数学) 立体光刻 流线、条纹线和路径线 流变学 牛顿流体 涡流 流速 过程(计算) 机械工程 物理 材料科学 复合材料 计算机科学 工程类 操作系统
作者
Weiwei Wu,Ding Xu,Shuang Ding,Yanjun Zhang,Tang Bing,Binquan Shi
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (3) 被引量:2
标识
DOI:10.1063/5.0141852
摘要

When printing Al2O3 parts by stereolithography technology, the laying process is an extremely important part. In the current work, the referred flow analysis was numerically investigated. The rheological behavior was measured to determine the rheological type of the slurry. According to the fitting analysis, a Sisko model was available to describe the non-Newtonian behavior. Then, the modified multiple relaxation time lattice Boltzmann method was proposed and validated to effectively improve the stability of the simulation. Based on the proposed method, the situations without and with printed solids in the previous layer were investigated by a series of simulations. The laying velocity and layer thickness were considered as two important factors on the laying process. When the situation without printed solids in the previous layer is analyzed, the streamlines and flow velocities curves were almost horizontal. With different laying velocities, the flow velocities show obvious differences at the same thickness. With different layer thicknesses, the difference is mainly embodied in the vertical velocity component. When the printed solid is considered, the solid seriously affected the smooth flow. The vortices appeared near the printed solid, which also caused the disturbance in both horizontal and vertical velocity components. The mentioned interfering factors indicated different actions on the flow. The research will contribute to understanding the flow of the laying process. It can help to select suitable laying velocity and layer thickness to avoid severe flow velocity fluctuation and redundant vertical velocity components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
震动的尔曼完成签到,获得积分10
1秒前
ss完成签到,获得积分20
2秒前
阳光的水壶完成签到,获得积分10
2秒前
木野狐完成签到,获得积分10
2秒前
华仔应助辛勤的初晴采纳,获得10
2秒前
2秒前
3秒前
3秒前
柴火烧叽完成签到,获得积分10
4秒前
田様应助小罗飞飞飞采纳,获得10
4秒前
佛系完成签到 ,获得积分10
4秒前
4秒前
丫丫完成签到,获得积分10
4秒前
bkagyin应助凤凰山采纳,获得10
5秒前
星星发布了新的文献求助10
6秒前
7秒前
义气大象完成签到,获得积分10
7秒前
大方嵩发布了新的文献求助10
7秒前
Cacilhas完成签到 ,获得积分10
7秒前
0000发布了新的文献求助30
7秒前
豆子发布了新的文献求助10
7秒前
Jenny应助木野狐采纳,获得10
7秒前
Khr1stINK发布了新的文献求助10
8秒前
牛牛完成签到,获得积分10
9秒前
9秒前
9秒前
li完成签到,获得积分10
9秒前
无花果应助发嗲的忆寒采纳,获得30
9秒前
xiaotudou95应助excellent_shit采纳,获得10
10秒前
btcat完成签到,获得积分10
10秒前
小蘑菇应助搬砖道人采纳,获得10
11秒前
思源应助校长采纳,获得10
11秒前
鸣隐完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794