MgNet: A fault diagnosis approach for multi-bearing system based on auxiliary bearing and multi-granularity information fusion

方位(导航) 断层(地质) 稳健性(进化) 振动 计算机科学 状态监测 噪音(视频) 加速度计 工程类 人工智能 模式识别(心理学) 地质学 声学 地震学 基因 操作系统 图像(数学) 电气工程 物理 化学 生物化学
作者
Jin Deng,Han Liu,Hairui Fang,Siyu Shao,Dong Wang,Yimin Hou,Dongsheng Chen,Mingcong Tang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:193: 110253-110253 被引量:33
标识
DOI:10.1016/j.ymssp.2023.110253
摘要

With the rapid development of pattern recognition represented by deep learning, the massive excellent bearing fault diagnosis methods have emerged. However, the majority of these reports only focus on the diagnosis of single bearing, while there are few works on fault detection of multi-bearing system. Furthermore, many diagnostic models based on vibration signals need to embed an accelerometer in the base or outer wall of the monitored bearing, which introducing new potential safety hazards, since the original machine structure was destructed. Therefore, with the purpose of not damaging the mechanical structure of the monitored bearing and the goal of promoting the detection efficiency by monitoring multiple bearings, a framework, called MgNet (Multi-granularity Network), based on multi-granularity information fusion was proposed, to complete the fault diagnosis and location of multi-bearing system via the vibration signal of auxiliary bearing. Finally, the effectiveness and superiority of the proposed approach were verified on a fault diagnosis dataset of the actual multi-bearing system, i.e., MgNet with strong robustness can complete the fault diagnosis task of multi-bearing system under the interference of noise signal(Gaussian noise and Laplace noise), and accurately locate the bearing where the fault occurs, which is expected to enrich the application scenarios of fault diagnosis algorithms for rotating machinery and improve the efficiency of fault detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
zhangling发布了新的文献求助10
2秒前
刘宇博发布了新的文献求助10
2秒前
xiaoqf完成签到,获得积分10
3秒前
4秒前
4秒前
酷炫翠桃发布了新的文献求助30
6秒前
陈ZHEN发布了新的文献求助10
6秒前
lijin完成签到,获得积分20
6秒前
科研神通应助zhangling采纳,获得10
7秒前
所所应助zhangling采纳,获得10
7秒前
zby发布了新的文献求助10
7秒前
天菱发布了新的文献求助10
8秒前
完美世界应助纪富采纳,获得10
9秒前
9秒前
10秒前
11秒前
gan完成签到,获得积分10
11秒前
岂识浊醪妙理应助lijin采纳,获得30
11秒前
青塘龙仔发布了新的文献求助10
12秒前
12秒前
N3完成签到 ,获得积分10
12秒前
旺仔Mario发布了新的文献求助10
13秒前
传奇3应助积极书双采纳,获得10
13秒前
13秒前
多摩川的烟花少年完成签到,获得积分10
13秒前
victor266完成签到 ,获得积分10
13秒前
jcc完成签到,获得积分10
15秒前
Kk发布了新的文献求助10
15秒前
田様应助大饼采纳,获得10
15秒前
李爱国应助怕黑安采纳,获得10
16秒前
打打应助zby采纳,获得10
16秒前
freedom发布了新的文献求助10
16秒前
17秒前
rachel03发布了新的文献求助10
17秒前
17秒前
hihi发布了新的文献求助10
19秒前
jcc发布了新的文献求助30
20秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160777
求助须知:如何正确求助?哪些是违规求助? 2811863
关于积分的说明 7893780
捐赠科研通 2470702
什么是DOI,文献DOI怎么找? 1315762
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053