MgNet: A fault diagnosis approach for multi-bearing system based on auxiliary bearing and multi-granularity information fusion

方位(导航) 断层(地质) 稳健性(进化) 振动 计算机科学 状态监测 噪音(视频) 加速度计 工程类 人工智能 模式识别(心理学) 地质学 声学 地震学 基因 操作系统 图像(数学) 电气工程 物理 化学 生物化学
作者
Jin Deng,Han Liu,Hairui Fang,Siyu Shao,Dong Wang,Yimin Hou,Dongsheng Chen,Mingcong Tang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:193: 110253-110253 被引量:32
标识
DOI:10.1016/j.ymssp.2023.110253
摘要

With the rapid development of pattern recognition represented by deep learning, the massive excellent bearing fault diagnosis methods have emerged. However, the majority of these reports only focus on the diagnosis of single bearing, while there are few works on fault detection of multi-bearing system. Furthermore, many diagnostic models based on vibration signals need to embed an accelerometer in the base or outer wall of the monitored bearing, which introducing new potential safety hazards, since the original machine structure was destructed. Therefore, with the purpose of not damaging the mechanical structure of the monitored bearing and the goal of promoting the detection efficiency by monitoring multiple bearings, a framework, called MgNet (Multi-granularity Network), based on multi-granularity information fusion was proposed, to complete the fault diagnosis and location of multi-bearing system via the vibration signal of auxiliary bearing. Finally, the effectiveness and superiority of the proposed approach were verified on a fault diagnosis dataset of the actual multi-bearing system, i.e., MgNet with strong robustness can complete the fault diagnosis task of multi-bearing system under the interference of noise signal(Gaussian noise and Laplace noise), and accurately locate the bearing where the fault occurs, which is expected to enrich the application scenarios of fault diagnosis algorithms for rotating machinery and improve the efficiency of fault detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助tanzhouliang采纳,获得10
3秒前
5秒前
李健应助科研通管家采纳,获得10
6秒前
6秒前
打打应助科研通管家采纳,获得10
6秒前
薰硝壤应助科研通管家采纳,获得30
6秒前
6秒前
Mutsu应助科研通管家采纳,获得20
6秒前
科研通AI2S应助科研通管家采纳,获得30
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
sine_mora发布了新的文献求助10
8秒前
悦耳非笑发布了新的文献求助30
9秒前
FXe完成签到,获得积分10
16秒前
我是老大应助KoitoYuu采纳,获得10
17秒前
pcr163应助杨茉采纳,获得60
20秒前
23秒前
sine_mora完成签到,获得积分10
24秒前
25秒前
Hello应助fly the bike采纳,获得30
26秒前
26秒前
吞吞完成签到,获得积分10
27秒前
28秒前
一起看海发布了新的文献求助10
30秒前
31秒前
迷人的Jack发布了新的文献求助10
33秒前
zmxssg008完成签到,获得积分10
33秒前
KoitoYuu发布了新的文献求助10
35秒前
宫宛儿完成签到,获得积分10
35秒前
blance完成签到 ,获得积分10
37秒前
doudou发布了新的文献求助10
39秒前
镜子应助煎饼狗子采纳,获得10
39秒前
39秒前
40秒前
41秒前
ding应助自由的青烟采纳,获得10
45秒前
45秒前
46秒前
47秒前
48秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084205
求助须知:如何正确求助?哪些是违规求助? 2737236
关于积分的说明 7544249
捐赠科研通 2386802
什么是DOI,文献DOI怎么找? 1265552
科研通“疑难数据库(出版商)”最低求助积分说明 613127
版权声明 598187