MgNet: A fault diagnosis approach for multi-bearing system based on auxiliary bearing and multi-granularity information fusion

方位(导航) 断层(地质) 稳健性(进化) 振动 计算机科学 状态监测 噪音(视频) 加速度计 工程类 人工智能 模式识别(心理学) 地质学 声学 地震学 基因 操作系统 图像(数学) 电气工程 物理 化学 生物化学
作者
Jin Deng,Han Liu,Hairui Fang,Siyu Shao,Dong Wang,Yimin Hou,Dongsheng Chen,Mingcong Tang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:193: 110253-110253 被引量:43
标识
DOI:10.1016/j.ymssp.2023.110253
摘要

With the rapid development of pattern recognition represented by deep learning, the massive excellent bearing fault diagnosis methods have emerged. However, the majority of these reports only focus on the diagnosis of single bearing, while there are few works on fault detection of multi-bearing system. Furthermore, many diagnostic models based on vibration signals need to embed an accelerometer in the base or outer wall of the monitored bearing, which introducing new potential safety hazards, since the original machine structure was destructed. Therefore, with the purpose of not damaging the mechanical structure of the monitored bearing and the goal of promoting the detection efficiency by monitoring multiple bearings, a framework, called MgNet (Multi-granularity Network), based on multi-granularity information fusion was proposed, to complete the fault diagnosis and location of multi-bearing system via the vibration signal of auxiliary bearing. Finally, the effectiveness and superiority of the proposed approach were verified on a fault diagnosis dataset of the actual multi-bearing system, i.e., MgNet with strong robustness can complete the fault diagnosis task of multi-bearing system under the interference of noise signal(Gaussian noise and Laplace noise), and accurately locate the bearing where the fault occurs, which is expected to enrich the application scenarios of fault diagnosis algorithms for rotating machinery and improve the efficiency of fault detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助景穆采纳,获得10
刚刚
fhghhhjh完成签到,获得积分10
刚刚
1秒前
艾思米利完成签到,获得积分20
2秒前
lieeey发布了新的文献求助10
3秒前
3秒前
科研通AI2S应助liyi采纳,获得10
5秒前
诗酒发布了新的文献求助10
5秒前
思源应助科研通管家采纳,获得10
6秒前
6秒前
ding应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
柯一一应助科研通管家采纳,获得20
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
7秒前
英姑应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
破三贼发布了新的文献求助10
7秒前
8秒前
龙仔子完成签到,获得积分10
9秒前
9秒前
不安的半梦完成签到,获得积分10
10秒前
诗酒完成签到,获得积分10
10秒前
龙仔子发布了新的文献求助10
11秒前
mayuzumi完成签到,获得积分10
12秒前
破三贼完成签到,获得积分10
13秒前
Leon发布了新的文献求助30
13秒前
15秒前
15秒前
15秒前
科研通AI5应助吴吴采纳,获得30
16秒前
大模型应助leslie花花采纳,获得10
16秒前
18秒前
yue发布了新的文献求助10
18秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498