MgNet: A fault diagnosis approach for multi-bearing system based on auxiliary bearing and multi-granularity information fusion

方位(导航) 断层(地质) 稳健性(进化) 振动 计算机科学 状态监测 噪音(视频) 加速度计 工程类 人工智能 模式识别(心理学) 地质学 声学 地震学 基因 操作系统 图像(数学) 电气工程 物理 化学 生物化学
作者
Jin Deng,Han Liu,Hairui Fang,Siyu Shao,Dong Wang,Yimin Hou,Dongsheng Chen,Mingcong Tang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:193: 110253-110253 被引量:43
标识
DOI:10.1016/j.ymssp.2023.110253
摘要

With the rapid development of pattern recognition represented by deep learning, the massive excellent bearing fault diagnosis methods have emerged. However, the majority of these reports only focus on the diagnosis of single bearing, while there are few works on fault detection of multi-bearing system. Furthermore, many diagnostic models based on vibration signals need to embed an accelerometer in the base or outer wall of the monitored bearing, which introducing new potential safety hazards, since the original machine structure was destructed. Therefore, with the purpose of not damaging the mechanical structure of the monitored bearing and the goal of promoting the detection efficiency by monitoring multiple bearings, a framework, called MgNet (Multi-granularity Network), based on multi-granularity information fusion was proposed, to complete the fault diagnosis and location of multi-bearing system via the vibration signal of auxiliary bearing. Finally, the effectiveness and superiority of the proposed approach were verified on a fault diagnosis dataset of the actual multi-bearing system, i.e., MgNet with strong robustness can complete the fault diagnosis task of multi-bearing system under the interference of noise signal(Gaussian noise and Laplace noise), and accurately locate the bearing where the fault occurs, which is expected to enrich the application scenarios of fault diagnosis algorithms for rotating machinery and improve the efficiency of fault detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助13679165979采纳,获得10
刚刚
ni发布了新的文献求助10
2秒前
隐形曼青应助敏感的芷采纳,获得10
2秒前
ybb完成签到,获得积分10
5秒前
5秒前
快乐的伟诚完成签到,获得积分10
7秒前
搜集达人应助大胆夜绿采纳,获得10
7秒前
7秒前
8秒前
辛勤的无血完成签到,获得积分10
11秒前
12秒前
rookie完成签到,获得积分10
12秒前
12秒前
ni完成签到,获得积分10
13秒前
step_stone给step_stone的求助进行了留言
14秒前
14秒前
荒野星辰发布了新的文献求助10
15秒前
敏感的芷完成签到,获得积分20
15秒前
17秒前
17秒前
18秒前
luoshi应助沐风采纳,获得20
18秒前
安南完成签到,获得积分10
18秒前
香蕉冬云完成签到 ,获得积分10
19秒前
自信安荷发布了新的文献求助200
19秒前
鱼雷发布了新的文献求助10
20秒前
兔子发布了新的文献求助10
20秒前
20秒前
田様应助coffee采纳,获得10
21秒前
21秒前
专注鼠标完成签到,获得积分10
21秒前
LingYing完成签到 ,获得积分10
22秒前
cheche完成签到,获得积分10
23秒前
liushun完成签到,获得积分10
23秒前
caoyy发布了新的文献求助10
23秒前
zzt发布了新的文献求助10
24秒前
26秒前
26秒前
章家炜发布了新的文献求助10
27秒前
脑洞疼应助xfxx采纳,获得10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824