Using lightweight deep learning algorithm for real-time detection of apple flowers in natural environments

稀释 果园 人工智能 计算机科学 算法 机器人 园艺 生态学 生物
作者
Yuying Shang,Xingshi Xu,Yitao Jiao,Zheng Wang,Zhixin Hua,Huaibo Song
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:207: 107765-107765 被引量:44
标识
DOI:10.1016/j.compag.2023.107765
摘要

Flower thinning at the most appropriate stage could achieve high and stable yield of apple. Achieving the accurate and real-time detection of apple flowers can provide necessary technical support for the vision system of thinning robots. An apple flower detection method based on lightweight YOLOv5s algorithm was proposed. The original Backbone of YOLOv5s was replaced by ShuffleNetv2, and the Conv module of the Neck part of YOLOv5s network was replaced by Ghost module. ShuffleNetv2 reduced the memory access cost through Channel Split operation. Ghost module reduced the computing cost of the general volume layer while maintaining the similar detection performance. The combination of these two methods in the improvement of YOLOv5s network can greatly reduce the size of the model and improve the detection speed, which was convenient for the migration and application of the model. To verify the effectiveness of the model, 3005 apple flower images in different environments were used for training and testing. The Precision, Recall, and mean Average Precision (mAP) of YOLOv5s-ShuffleNetv2-Ghost model were 88.40 %, 86.10 %, and 91.80 %, respectively, the model size was only 0.61 MB, and the detection speed was 86.21 fps. The detection speed of YOLOv5s-ShuffleNetv2-Ghost model on the Jetson nano B01 development board was 2.48 fps. The results showed that the method was feasible for real-time and accurate detection of apple flowers. The research can provide technical reference for the development of orchard flower thinning robots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Wll发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
小张快跑发布了新的文献求助10
2秒前
3秒前
满天星完成签到,获得积分20
3秒前
小蘑菇应助狂野的凝芙采纳,获得10
3秒前
QQ完成签到,获得积分10
3秒前
4秒前
华仔应助Muya采纳,获得10
4秒前
4秒前
摸鱼宝完成签到,获得积分20
4秒前
闪闪乞完成签到,获得积分10
6秒前
晨曦发布了新的文献求助10
6秒前
咸鱼中下游完成签到,获得积分10
7秒前
Bo发布了新的文献求助20
7秒前
FashionBoy应助彪壮的斩采纳,获得10
8秒前
8秒前
8秒前
小猴子应助笑南采纳,获得20
8秒前
Nthorn_rone完成签到,获得积分10
8秒前
香蕉觅云应助Silence采纳,获得10
9秒前
炸鸡加热发布了新的文献求助10
9秒前
轮回1奇点发布了新的文献求助10
9秒前
9秒前
田様应助西海岸的风采纳,获得10
10秒前
闪电完成签到,获得积分10
10秒前
11秒前
11秒前
nipoo发布了新的文献求助10
11秒前
11秒前
胡图图完成签到 ,获得积分10
12秒前
plain完成签到,获得积分20
12秒前
12秒前
13秒前
小巧的寻双完成签到 ,获得积分10
13秒前
13秒前
简历发布了新的文献求助10
14秒前
科研通AI6应助lengchitu采纳,获得10
14秒前
14秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583383
求助须知:如何正确求助?哪些是违规求助? 4667241
关于积分的说明 14766122
捐赠科研通 4609415
什么是DOI,文献DOI怎么找? 2529196
邀请新用户注册赠送积分活动 1498411
关于科研通互助平台的介绍 1467061