Using lightweight deep learning algorithm for real-time detection of apple flowers in natural environments

稀释 果园 人工智能 计算机科学 算法 机器人 园艺 生态学 生物
作者
Yuying Shang,Xingshi Xu,Yitao Jiao,Zheng Wang,Zhixin Hua,Huaibo Song
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:207: 107765-107765 被引量:44
标识
DOI:10.1016/j.compag.2023.107765
摘要

Flower thinning at the most appropriate stage could achieve high and stable yield of apple. Achieving the accurate and real-time detection of apple flowers can provide necessary technical support for the vision system of thinning robots. An apple flower detection method based on lightweight YOLOv5s algorithm was proposed. The original Backbone of YOLOv5s was replaced by ShuffleNetv2, and the Conv module of the Neck part of YOLOv5s network was replaced by Ghost module. ShuffleNetv2 reduced the memory access cost through Channel Split operation. Ghost module reduced the computing cost of the general volume layer while maintaining the similar detection performance. The combination of these two methods in the improvement of YOLOv5s network can greatly reduce the size of the model and improve the detection speed, which was convenient for the migration and application of the model. To verify the effectiveness of the model, 3005 apple flower images in different environments were used for training and testing. The Precision, Recall, and mean Average Precision (mAP) of YOLOv5s-ShuffleNetv2-Ghost model were 88.40 %, 86.10 %, and 91.80 %, respectively, the model size was only 0.61 MB, and the detection speed was 86.21 fps. The detection speed of YOLOv5s-ShuffleNetv2-Ghost model on the Jetson nano B01 development board was 2.48 fps. The results showed that the method was feasible for real-time and accurate detection of apple flowers. The research can provide technical reference for the development of orchard flower thinning robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能的小叮当完成签到,获得积分0
1秒前
5秒前
老迟到的钢铁侠完成签到,获得积分10
5秒前
无花果应助英俊念寒采纳,获得10
6秒前
神勇麦片发布了新的文献求助30
6秒前
7秒前
7秒前
无私小小完成签到,获得积分10
7秒前
久久一零发布了新的文献求助10
8秒前
科研通AI2S应助柚屿采纳,获得10
8秒前
Orange应助学渣本渣采纳,获得10
9秒前
terence发布了新的文献求助10
10秒前
11秒前
王大壮完成签到,获得积分10
12秒前
13秒前
Tracy麦子发布了新的文献求助10
13秒前
NexusExplorer应助清脆青采纳,获得30
13秒前
笨笨球发布了新的文献求助10
15秒前
16秒前
里lilili完成签到,获得积分10
16秒前
17秒前
Tracy麦子完成签到,获得积分10
20秒前
靓丽念薇发布了新的文献求助10
20秒前
饱满振家关注了科研通微信公众号
22秒前
H喜欢老霉发布了新的文献求助10
22秒前
愉快尔冬发布了新的文献求助10
22秒前
22秒前
您骂我应该的完成签到,获得积分10
23秒前
MinggniM完成签到,获得积分20
23秒前
23秒前
Ava应助里lilili采纳,获得10
25秒前
Jasper应助体贴半仙采纳,获得10
25秒前
hywang完成签到,获得积分10
26秒前
26秒前
久久一零完成签到,获得积分10
27秒前
科研通AI2S应助MinggniM采纳,获得10
27秒前
dq0610发布了新的文献求助10
27秒前
淡淡醉冬完成签到 ,获得积分10
28秒前
28秒前
Jasper应助phyllis采纳,获得10
29秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
BIOMIMETIC RESTORATIVE DENTISTRY (volume 2) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3178169
求助须知:如何正确求助?哪些是违规求助? 2829123
关于积分的说明 7970289
捐赠科研通 2490430
什么是DOI,文献DOI怎么找? 1327585
科研通“疑难数据库(出版商)”最低求助积分说明 635294
版权声明 602904