基因敲除
生物
癌症研究
信号转导
程序性细胞死亡
活性氧
铁质
细胞生物学
细胞凋亡
生物化学
化学
有机化学
作者
Jinsi Chen,Qian Zhang,Wei Tian,Chao Ge,Yuting Su,Jinjun Li,Hua Tian
摘要
Abstract AKR1C3 is frequently overexpressed and it is a validated therapeutic target in various tumors including hepatocellular carcinoma (HCC). Our previous study showed that AKR1C3 facilitated HCC proliferation and metastasis by forming a positive feedback loop of AKR1C3‐NF‐κB‐STAT3. Ferroptosis is a form of iron‐dependent cell death driven by iron‐dependent accumulation of lipid reactive oxygen species and plays an important role in tumor suppression. However, little is known about the role of AKR1C3 in ferroptosis susceptibility. In this study, we found that knockdown of AKR1C3 potently enhanced the sensitivity of HCC cells to ferroptosis inducers both in vitro and in vivo. Overexpression of AKR1C3 protected against ferroptosis in HCC cells. Mechanistically, AKR1C3 regulated ferroptosis through YAP/SLC7A11 signaling in HCC. AKR1C3 knockdown led to a decrease in YAP nuclear translocation, resulted in the inhibition of cystine transporter SLC7A11, and a subsequent increase in the intracellular levels of ferrous iron and ultimately ferroptosis. Moreover, we found that the combination of AKR1C3 and SLC7A11 was a strong predictor of poor prognosis in HCC. Collectively, these findings identify a novel role of AKR1C3 in ferroptosis, and highlighting a candidate therapeutic target to potentially improve the effect of ferroptosis‐based antitumor therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI