Small-object detection based on YOLOv5 in autonomous driving systems

计算机科学 目标检测 人工智能 计算机视觉 透视图(图形) 任务(项目管理) 对象(语法) 探测器 领域(数学) 失真(音乐) 深度学习 多样性(控制论) 实时计算 模式识别(心理学) 电信 经济 管理 放大器 纯数学 数学 带宽(计算) 计算机网络
作者
Bharat Mahaur,K. K. Mishra
出处
期刊:Pattern Recognition Letters [Elsevier]
卷期号:168: 115-122 被引量:190
标识
DOI:10.1016/j.patrec.2023.03.009
摘要

With the rapid advancements in the field of autonomous driving, the need for faster and more accurate object detection frameworks has become a necessity. Many recent deep learning-based object detectors have shown compelling performance for the detection of large objects in a variety of real-time driving applications. However, the detection of small objects such as traffic signs and traffic lights is a challenging task owing to the complex nature of such objects. Additionally, the complexity present in a few images due to the existence of foreground/background imbalance and perspective distortion caused by adverse weather and low-lighting conditions further makes it difficult to detect small objects accurately. In this letter, we investigate how an existing object detector can be adjusted to address specific tasks and how these modifications can impact the detection of small objects. To achieve this, we explore and introduce architectural changes to the popular YOLOv5 model to improve its performance in the detection of small objects without sacrificing the detection accuracy of large objects, particularly in autonomous driving. We will show that our modifications barely increase the computational complexity but significantly improve the detection accuracy and speed. Compared to the conventional YOLOv5, the proposed iS-YOLOv5 model increases the mean Average Precision (mAP) by 3.35% on the BDD100K dataset. Nevertheless, our proposed model improves the detection speed by 2.57 frames per second (FPS) compared to the YOLOv5 model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发的不太好完成签到,获得积分10
刚刚
上官若男应助DyG采纳,获得10
1秒前
1秒前
qq发布了新的文献求助10
2秒前
任寒松完成签到,获得积分10
2秒前
2秒前
chc完成签到,获得积分10
2秒前
ccm应助科研眼镜蛇采纳,获得10
2秒前
研究牲发布了新的文献求助10
2秒前
White_Night完成签到 ,获得积分10
3秒前
4秒前
Lynth_雪鸮发布了新的文献求助10
4秒前
Lucas应助吕白莲采纳,获得10
5秒前
令和发布了新的文献求助10
5秒前
AS完成签到,获得积分10
5秒前
大力寒荷发布了新的文献求助10
6秒前
小小应助明理的帆布鞋采纳,获得10
7秒前
顾矜应助Xu采纳,获得10
7秒前
杨桑完成签到 ,获得积分10
8秒前
ding应助国王的宝库采纳,获得10
8秒前
8秒前
9秒前
10秒前
11秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
辛尘完成签到,获得积分10
14秒前
老干部发布了新的文献求助10
14秒前
14秒前
chenyiiii完成签到,获得积分20
14秒前
星期8发布了新的文献求助10
14秒前
笠原May发布了新的文献求助30
15秒前
大模型应助sun采纳,获得10
16秒前
ccx981166完成签到,获得积分10
16秒前
17秒前
沉沉完成签到 ,获得积分0
18秒前
Lynth_雪鸮发布了新的文献求助10
18秒前
冷静新烟发布了新的文献求助10
19秒前
czx完成签到,获得积分10
19秒前
吕白莲发布了新的文献求助10
19秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620793
求助须知:如何正确求助?哪些是违规求助? 4705330
关于积分的说明 14931678
捐赠科研通 4763128
什么是DOI,文献DOI怎么找? 2551196
邀请新用户注册赠送积分活动 1513780
关于科研通互助平台的介绍 1474661