Small-object detection based on YOLOv5 in autonomous driving systems

计算机科学 目标检测 人工智能 计算机视觉 透视图(图形) 任务(项目管理) 对象(语法) 探测器 领域(数学) 失真(音乐) 深度学习 多样性(控制论) 实时计算 模式识别(心理学) 电信 经济 管理 放大器 纯数学 数学 带宽(计算) 计算机网络
作者
Bharat Mahaur,K. K. Mishra
出处
期刊:Pattern Recognition Letters [Elsevier]
卷期号:168: 115-122 被引量:190
标识
DOI:10.1016/j.patrec.2023.03.009
摘要

With the rapid advancements in the field of autonomous driving, the need for faster and more accurate object detection frameworks has become a necessity. Many recent deep learning-based object detectors have shown compelling performance for the detection of large objects in a variety of real-time driving applications. However, the detection of small objects such as traffic signs and traffic lights is a challenging task owing to the complex nature of such objects. Additionally, the complexity present in a few images due to the existence of foreground/background imbalance and perspective distortion caused by adverse weather and low-lighting conditions further makes it difficult to detect small objects accurately. In this letter, we investigate how an existing object detector can be adjusted to address specific tasks and how these modifications can impact the detection of small objects. To achieve this, we explore and introduce architectural changes to the popular YOLOv5 model to improve its performance in the detection of small objects without sacrificing the detection accuracy of large objects, particularly in autonomous driving. We will show that our modifications barely increase the computational complexity but significantly improve the detection accuracy and speed. Compared to the conventional YOLOv5, the proposed iS-YOLOv5 model increases the mean Average Precision (mAP) by 3.35% on the BDD100K dataset. Nevertheless, our proposed model improves the detection speed by 2.57 frames per second (FPS) compared to the YOLOv5 model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
wm驳回了Ava应助
1秒前
酷波er应助桃子e采纳,获得10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
烟花应助漾漾采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得30
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
Criminology34应助科研通管家采纳,获得10
5秒前
无极微光应助科研通管家采纳,获得20
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762181
求助须知:如何正确求助?哪些是违规求助? 5534311
关于积分的说明 15402288
捐赠科研通 4898393
什么是DOI,文献DOI怎么找? 2634850
邀请新用户注册赠送积分活动 1583000
关于科研通互助平台的介绍 1538201