亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Small-object detection based on YOLOv5 in autonomous driving systems

计算机科学 目标检测 人工智能 计算机视觉 透视图(图形) 任务(项目管理) 对象(语法) 探测器 领域(数学) 失真(音乐) 深度学习 多样性(控制论) 实时计算 模式识别(心理学) 电信 经济 管理 放大器 纯数学 数学 带宽(计算) 计算机网络
作者
Bharat Mahaur,K. K. Mishra
出处
期刊:Pattern Recognition Letters [Elsevier]
卷期号:168: 115-122 被引量:190
标识
DOI:10.1016/j.patrec.2023.03.009
摘要

With the rapid advancements in the field of autonomous driving, the need for faster and more accurate object detection frameworks has become a necessity. Many recent deep learning-based object detectors have shown compelling performance for the detection of large objects in a variety of real-time driving applications. However, the detection of small objects such as traffic signs and traffic lights is a challenging task owing to the complex nature of such objects. Additionally, the complexity present in a few images due to the existence of foreground/background imbalance and perspective distortion caused by adverse weather and low-lighting conditions further makes it difficult to detect small objects accurately. In this letter, we investigate how an existing object detector can be adjusted to address specific tasks and how these modifications can impact the detection of small objects. To achieve this, we explore and introduce architectural changes to the popular YOLOv5 model to improve its performance in the detection of small objects without sacrificing the detection accuracy of large objects, particularly in autonomous driving. We will show that our modifications barely increase the computational complexity but significantly improve the detection accuracy and speed. Compared to the conventional YOLOv5, the proposed iS-YOLOv5 model increases the mean Average Precision (mAP) by 3.35% on the BDD100K dataset. Nevertheless, our proposed model improves the detection speed by 2.57 frames per second (FPS) compared to the YOLOv5 model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
TTK完成签到,获得积分10
3秒前
ant完成签到,获得积分10
3秒前
5秒前
7秒前
TTK驳回了Nancy应助
9秒前
无花果应助遥知马采纳,获得10
10秒前
一二完成签到 ,获得积分10
13秒前
爱吃草莓蛋糕完成签到 ,获得积分10
16秒前
17秒前
安屿完成签到 ,获得积分10
19秒前
大鹅发布了新的文献求助10
22秒前
23秒前
24秒前
高高元柏发布了新的文献求助10
29秒前
aDou完成签到 ,获得积分10
29秒前
脑洞疼应助科研通管家采纳,获得10
31秒前
852应助科研通管家采纳,获得20
31秒前
汉堡包应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
31秒前
hkl1542应助科研通管家采纳,获得10
31秒前
31秒前
不知道是谁完成签到,获得积分10
32秒前
33秒前
Mufreh应助包容的硬币采纳,获得10
33秒前
37秒前
37秒前
风雨无阻发布了新的文献求助10
38秒前
伊绵好完成签到,获得积分10
38秒前
大鹅完成签到,获得积分10
41秒前
43秒前
45秒前
脑洞疼应助endlessloop采纳,获得10
46秒前
zyin发布了新的文献求助10
47秒前
48秒前
49秒前
胡萝卜完成签到 ,获得积分10
51秒前
逢亮发布了新的文献求助10
52秒前
小马甲应助Crw__采纳,获得10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714117
求助须知:如何正确求助?哪些是违规求助? 5220743
关于积分的说明 15272751
捐赠科研通 4865670
什么是DOI,文献DOI怎么找? 2612254
邀请新用户注册赠送积分活动 1562419
关于科研通互助平台的介绍 1519614