Small-object detection based on YOLOv5 in autonomous driving systems

计算机科学 目标检测 人工智能 计算机视觉 透视图(图形) 任务(项目管理) 对象(语法) 探测器 领域(数学) 失真(音乐) 深度学习 多样性(控制论) 实时计算 模式识别(心理学) 电信 经济 管理 放大器 纯数学 数学 带宽(计算) 计算机网络
作者
Bharat Mahaur,K. K. Mishra
出处
期刊:Pattern Recognition Letters [Elsevier]
卷期号:168: 115-122 被引量:190
标识
DOI:10.1016/j.patrec.2023.03.009
摘要

With the rapid advancements in the field of autonomous driving, the need for faster and more accurate object detection frameworks has become a necessity. Many recent deep learning-based object detectors have shown compelling performance for the detection of large objects in a variety of real-time driving applications. However, the detection of small objects such as traffic signs and traffic lights is a challenging task owing to the complex nature of such objects. Additionally, the complexity present in a few images due to the existence of foreground/background imbalance and perspective distortion caused by adverse weather and low-lighting conditions further makes it difficult to detect small objects accurately. In this letter, we investigate how an existing object detector can be adjusted to address specific tasks and how these modifications can impact the detection of small objects. To achieve this, we explore and introduce architectural changes to the popular YOLOv5 model to improve its performance in the detection of small objects without sacrificing the detection accuracy of large objects, particularly in autonomous driving. We will show that our modifications barely increase the computational complexity but significantly improve the detection accuracy and speed. Compared to the conventional YOLOv5, the proposed iS-YOLOv5 model increases the mean Average Precision (mAP) by 3.35% on the BDD100K dataset. Nevertheless, our proposed model improves the detection speed by 2.57 frames per second (FPS) compared to the YOLOv5 model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
英姑应助Marksman497采纳,获得10
2秒前
2秒前
多喝水完成签到 ,获得积分10
3秒前
易瑾完成签到 ,获得积分10
3秒前
3秒前
大白不白完成签到,获得积分10
3秒前
香奈宝完成签到,获得积分10
4秒前
张牧之完成签到 ,获得积分10
4秒前
蓝桥兰灯完成签到,获得积分10
4秒前
panxixiang完成签到,获得积分20
4秒前
沫荔完成签到 ,获得积分10
6秒前
panxixiang发布了新的文献求助10
7秒前
陈艺鹏完成签到,获得积分10
7秒前
Einson完成签到 ,获得积分10
8秒前
12345656656完成签到,获得积分10
8秒前
8秒前
盐于律己发布了新的文献求助10
9秒前
畅快yig完成签到,获得积分10
10秒前
come发布了新的文献求助10
10秒前
10秒前
13秒前
Tonald Yang发布了新的文献求助10
14秒前
14秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
16秒前
榕俊完成签到,获得积分10
16秒前
16秒前
17秒前
李健应助mugglea采纳,获得10
18秒前
科研通AI6应助HudaBala采纳,获得100
18秒前
qqq完成签到,获得积分10
19秒前
CipherSage应助panxixiang采纳,获得10
19秒前
东隅完成签到,获得积分10
20秒前
小爽完成签到,获得积分0
21秒前
谦让疾完成签到,获得积分20
21秒前
姚琛完成签到 ,获得积分10
21秒前
liu完成签到,获得积分10
22秒前
22秒前
23秒前
Hindiii完成签到,获得积分10
23秒前
zhh完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498797
求助须知:如何正确求助?哪些是违规求助? 4595936
关于积分的说明 14450632
捐赠科研通 4528886
什么是DOI,文献DOI怎么找? 2481758
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438653