Development and validation of a CT‐based radiomics signature for identifying high‐risk neuroblastomas under the revised Children's Oncology Group classification system

医学 无线电技术 置信区间 逻辑回归 线性判别分析 支持向量机 内科学 放射科 人工智能 肿瘤科 机器学习 计算机科学
作者
Haoru Wang,Mingye Xie,Xin Chen,Jin Zhu,Hao Ding,Li Zhang,Zhengxia Pan,Ling He
出处
期刊:Pediatric Blood & Cancer [Wiley]
卷期号:70 (5) 被引量:9
标识
DOI:10.1002/pbc.30280
摘要

Abstract Background To develop and validate a radiomics signature based on computed tomography (CT) for identifying high‐risk neuroblastomas. Procedure This retrospective study included 339 patients with neuroblastomas, who were classified into high‐risk and non‐high‐risk groups according to the revised Children's Oncology Group classification system. These patients were then randomly divided into a training set ( n = 237) and a testing set ( n = 102). Pretherapy CT images of the arterial phase were segmented by two radiologists. Pyradiomics package and FeAture Explorer software were used to extract and process radiomics features. Radiomics models based on linear discriminant analysis (LDA), logistic regression (LR), and support vector machine (SVM) were constructed, and the area under the curve (AUC), 95% confidence interval (CI), and accuracy were calculated. Results The optimal LDA, LR, and SVM models had 11, 12, and 14 radiomics features, respectively. The AUC of the LDA model in the training and testing sets were 0.877 (95% CI: 0.833–0.921) and 0.867 (95% CI: 0.797–0.937), with an accuracy of 0.823 and 0.804, respectively. The AUC of the LR model in the training and testing sets were 0.881 (95% CI: 0.839–0.924) and 0.855 (95% CI: 0.781–0.930), with an accuracy of 0.823 and 0.804, respectively. The AUC of the SVM model in the training and testing sets were 0.879 (95% CI: 0.836–0.923) and 0.862 (95% CI: 0.791–0.934), with an accuracy of 0.827 and 0.804, respectively. Conclusions CT‐based radiomics is able to identify high‐risk neuroblastomas and may provide additional image biomarkers for the identification of high‐risk neuroblastomas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
。。。发布了新的文献求助10
1秒前
一个左正蹬完成签到,获得积分10
4秒前
czj完成签到,获得积分10
5秒前
大大蕾完成签到 ,获得积分10
5秒前
梓泽丘墟应助晚风吹起来采纳,获得10
5秒前
王芋圆完成签到,获得积分10
6秒前
苹果含烟发布了新的文献求助10
6秒前
雪落完成签到,获得积分10
9秒前
apocalypse完成签到 ,获得积分10
9秒前
10秒前
sscss完成签到,获得积分10
11秒前
小城故事和冰雨完成签到,获得积分10
12秒前
风趣煎蛋完成签到,获得积分10
15秒前
20秒前
Max完成签到,获得积分10
25秒前
28秒前
30秒前
俭朴的发带完成签到,获得积分10
31秒前
Nov发布了新的文献求助10
31秒前
布丁完成签到,获得积分10
34秒前
风趣煎蛋发布了新的文献求助30
35秒前
务实青筠完成签到 ,获得积分10
36秒前
ygx完成签到 ,获得积分10
37秒前
不安士晋完成签到,获得积分10
37秒前
paparazzi221应助xiaobai采纳,获得80
37秒前
老衲完成签到,获得积分0
41秒前
chenlin完成签到,获得积分10
44秒前
46秒前
liuhan完成签到 ,获得积分10
48秒前
从心随缘完成签到 ,获得积分10
48秒前
48秒前
怜熙完成签到,获得积分10
48秒前
smile发布了新的文献求助10
50秒前
嘎发完成签到,获得积分10
51秒前
lf完成签到,获得积分10
52秒前
53秒前
1459发布了新的文献求助20
53秒前
54秒前
aich完成签到,获得积分10
54秒前
320me666完成签到 ,获得积分10
54秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813377
关于积分的说明 7900197
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316595
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175