清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Preliminary Cost Estimation of Highway Projects Using Statistical Learning Methods

可解释性 人工神经网络 成本估算 Lasso(编程语言) 计算机科学 回归分析 运筹学 稀缺 估计 机器学习 工程类 经济 万维网 微观经济学 系统工程
作者
Yuanxin Zhang,R. Edward Minchin,Ian Flood,Robert Ries
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:149 (5) 被引量:5
标识
DOI:10.1061/jcemd4.coeng-12773
摘要

Setting up workable budgets symbolizes the competence of state highway agencies (SHAs) in fulfilling their responsibilities, and unreliable cost estimates can cause economic and political complications. The unclear scope definition and scarcity of project information available at early stages make it hard to generate reliable preliminary estimates. Hence, based on the 1,249 projects retrieved from the Florida Department of Transportation (FDOT) database, this research aimed to develop a cost estimation model using statistical learning methods for SHAs to forecast preliminary costs during the early stages of a transportation project to fulfill different cost control and managerial functions. However, the currently used methods have serious limitations. This study introduced alternative statistical learning approaches to the currently most used methods: least absolute shrinkage and selection operator (LASSO) and general regression neural network (GRNN). LASSO regression, for instance, has proved in other areas of science to be remarkably better in terms of variable selection, interpretability, and numerical stability. In addition, this study also accounted for economic factors in model development because economic conditions are influential on highway construction costs but have received limited attention. Using the same dataset, LASSO and GRNN models were developed, and then their performances were evaluated based on a set of criteria, e.g., the mean absolute error and mean absolute percentage error. In comparison to the current practice with state DOTs, this research contributes to the body of knowledge by introducing a series of objective modeling approaches that can prevent human errors, requiring no substantial experience in preliminary estimating. Besides the introduction of statistical learning methods, this study took economic indicators into account when developing the models because they are important factors but have been ignored in previous studies. In addition, these statistical learning methods can produce reliable estimates in a much faster and more consistent fashion, which is critical, particularly considering the massive workload faced by most SHAs and the allowable time to make a preliminary estimate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
李振博完成签到 ,获得积分10
23秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
47秒前
1分钟前
1分钟前
Huiqi_Li发布了新的文献求助10
1分钟前
秋思冬念完成签到 ,获得积分10
1分钟前
Huiqi_Li完成签到,获得积分10
1分钟前
wangyang完成签到 ,获得积分10
1分钟前
和谐曼凝完成签到 ,获得积分10
2分钟前
糊涂的青烟完成签到 ,获得积分10
2分钟前
3分钟前
江江发布了新的文献求助30
3分钟前
江江完成签到 ,获得积分10
4分钟前
Darius应助科研通管家采纳,获得10
4分钟前
充电宝应助江江采纳,获得10
4分钟前
小周完成签到 ,获得积分10
4分钟前
yyj完成签到,获得积分10
5分钟前
lanxinge完成签到 ,获得积分20
5分钟前
gszy1975发布了新的文献求助10
5分钟前
6分钟前
6分钟前
noss发布了新的文献求助10
6分钟前
LTJ完成签到,获得积分10
7分钟前
高数数完成签到 ,获得积分10
7分钟前
7分钟前
开朗雅霜发布了新的文献求助10
7分钟前
燕子应助崔洪瑞采纳,获得10
7分钟前
姚老表完成签到,获得积分10
7分钟前
yingzaifeixiang完成签到 ,获得积分10
7分钟前
CodeCraft应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
自觉石头完成签到 ,获得积分10
9分钟前
科研通AI5应助细心的冷雪采纳,获得10
9分钟前
炜大的我完成签到,获得积分10
9分钟前
耳东陈完成签到 ,获得积分10
9分钟前
科研螺丝完成签到 ,获得积分10
10分钟前
ldjldj_2004完成签到 ,获得积分10
10分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773680
求助须知:如何正确求助?哪些是违规求助? 3319180
关于积分的说明 10193410
捐赠科研通 3033816
什么是DOI,文献DOI怎么找? 1664736
邀请新用户注册赠送积分活动 796293
科研通“疑难数据库(出版商)”最低求助积分说明 757416