SoilTAG: Fine-Grained Soil Moisture Sensing Through Chipless Tags

含水量 水分 遥感 计算机科学 环境科学 土壤科学 气象学 工程类 地质学 岩土工程 物理
作者
Wenli Jiao,Ju Wang,Yelu He,Xiangdong Xi,Fuwei Wang
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 2153-2170 被引量:3
标识
DOI:10.1109/tmc.2023.3253135
摘要

Soil moisture sensing plays an important role in agriculture, especially in greenhouses or vertical farms. However, existing soil moisture sensing systems are either expensive and require batteries or suffer from low accuracy, preventing their real-world applications. This paper introduces SoilTAG, a battery-free, chipless tag-based high accuracy soil moisture sensing system. The key insight is that the tag's resonator can convert changes in soil moisture levels into changes in the tag's frequency response. However, two challenges need to be addressed before applying the system to the real world. First, how to design a resonator whose frequency response is sensitive to even small moisture changes, which is the basis for high-precision moisture sensing. To solve the challenge, we design a special structure (i.e., a defected ground structure) as the tag's resonator and optimize its key parameters to increase the frequency response sensitivity for different soil moisture levels. Second, how to design a robust soil moisture feature that is independent of the tag's location changes, since the frequency response varies by both the tag location and soil moisture. To deal with this challenge, we introduce a relative frequency response feature whose amplitude ratio is only related to soil moisture levels and independent of the tag location changes. Extensive experiments show that SoilTAG achieves $90th$ percentile moisture sensing error of $2\%$ , $3.64\%$ , and $8\%$ when the distance between transmitter and tag is 6 m, 10 m, and 13.9 m. Compared to current commodity sensors, SoilTAG saves the cost per sensor by more than 70%.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小黑脸完成签到,获得积分10
3秒前
弃医从个啥完成签到,获得积分10
3秒前
够了完成签到 ,获得积分10
5秒前
10秒前
11秒前
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
侯巧芝完成签到 ,获得积分10
11秒前
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
阔达萤完成签到 ,获得积分10
12秒前
Andy完成签到 ,获得积分10
12秒前
13秒前
13秒前
13秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
15秒前
15秒前
Maestro_S发布了新的文献求助30
17秒前
Maestro_S发布了新的文献求助50
17秒前
Maestro_S发布了新的文献求助10
17秒前
Maestro_S发布了新的文献求助10
17秒前
Maestro_S发布了新的文献求助50
17秒前
Maestro_S发布了新的文献求助10
17秒前
Maestro_S发布了新的文献求助10
17秒前
Maestro_S发布了新的文献求助10
17秒前
Maestro_S发布了新的文献求助10
17秒前
Maestro_S发布了新的文献求助10
17秒前
Maestro_S发布了新的文献求助10
17秒前
Maestro_S发布了新的文献求助10
17秒前
Maestro_S发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5866758
求助须知:如何正确求助?哪些是违规求助? 6426838
关于积分的说明 15654966
捐赠科研通 4981749
什么是DOI,文献DOI怎么找? 2686737
邀请新用户注册赠送积分活动 1629553
关于科研通互助平台的介绍 1587550