系统性红斑狼疮
生发中心
CXCR3型
自身抗体
免疫学
B细胞
流式细胞术
生物
红斑狼疮
白细胞介素21
抗体
分子生物学
T细胞
化学
内科学
医学
趋化因子
免疫系统
疾病
趋化因子受体
作者
Guojue Wang,Ying Sun,Yongshuai Jiang,Shengzhe Li,Yunhui Liu,Yuanyang Yuan,Hong Nie
标识
DOI:10.1016/j.molimm.2023.02.009
摘要
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by a high level of autoantibody production. T follicular helper (Tfh) cells and B cells participate in the development of SLE. Several studies have shown that CXCR3+ cells are increased in SLE patients. However, the mechanism through which CXCR3 influences lupus development remains unclear. In this study, we established lupus models to determine the role of CXCR3 in lupus pathogenesis. The concentration of autoantibodies was detected using the enzyme-linked immunosorbent assay (ELISA), and the percentages of Tfh cells and B cells were measured using flow cytometry. RNA sequencing (RNA-seq) was performed to detect the differentially expressed genes in CD4+ T cells from wild-type (WT) and CXCR3 knock-out (KO) lupus mice. Migration of CD4+ T cells in spleen section was assessed using immunofluorescence. CD4+ T cell function in helping B cells produce antibodies was determined using a co-culture experiment and supernatant IgG ELISA. Lupus mice were treated with a CXCR3 antagonist to confirm the therapeutic effects. We found that the expression of CXCR3 was increased in CD4+ T cells from lupus mice. CXCR3 deficiency reduced autoantibody production with decreased proportions of Tfh cells, germinal center (GC) B cells, and plasma cells. Expression of Tfh-related genes was downregulated in CD4+ T cells from CXCR3 KO lupus mice. Migration to B cell follicles and T-helper function of CD4+ T cells were reduced in CXCR3 KO lupus mice. CXCR3 antagonist AMG487 decreased the level of serum anti-dsDNA IgG in lupus mice. We clarify that CXCR3 may play an important role in autoantibody production by increasing the percentages of aberrant activated Tfh cells and B cells and promoting the migration and T-helper function of CD4+ T cells in lupus mice. Thus, CXCR3 may be a potential target for lupus therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI