已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep‐Learning Models for Detection and Localization of Visible Clinically Significant Prostate Cancer on Multi‐Parametric MRI

医学 有效扩散系数 前列腺癌 磁共振成像 核医学 前列腺 磁共振弥散成像 放射科 活检 接收机工作特性 癌症 内科学
作者
Zhaonan Sun,Pengsheng Wu,Yingpu Cui,Xiang Liu,Kexin Wang,Ge Gao,Huihui Wang,Xiaodong Zhang,Xiaoying Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (4): 1067-1081 被引量:21
标识
DOI:10.1002/jmri.28608
摘要

Deep learning for diagnosing clinically significant prostate cancer (csPCa) is feasible but needs further evaluation in patients with prostate-specific antigen (PSA) levels of 4-10 ng/mL.To explore diffusion-weighted imaging (DWI), alone and in combination with T2-weighted imaging (T2WI), for deep-learning-based models to detect and localize visible csPCa.Retrospective.One thousand six hundred twenty-eight patients with systematic and cognitive-targeted biopsy-confirmation (1007 csPCa, 621 non-csPCa) were divided into model development (N = 1428) and hold-out test (N = 200) datasets.DWI with diffusion-weighted single-shot gradient echo planar imaging sequence and T2WI with T2-weighted fast spin echo sequence at 3.0-T and 1.5-T.The ground truth of csPCa was annotated by two radiologists in consensus. A diffusion model, DWI and apparent diffusion coefficient (ADC) as input, and a biparametric model (DWI, ADC, and T2WI as input) were trained based on U-Net. Three radiologists provided the PI-RADS (version 2.1) assessment. The performances were determined at the lesion, location, and the patient level.The performance was evaluated using the areas under the ROC curves (AUCs), sensitivity, specificity, and accuracy. A P value <0.05 was considered statistically significant.The lesion-level sensitivities of the diffusion model, the biparametric model, and the PI-RADS assessment were 89.0%, 85.3%, and 90.8% (P = 0.289-0.754). At the patient level, the diffusion model had significantly higher sensitivity than the biparametric model (96.0% vs. 90.0%), while there was no significant difference in specificity (77.0%. vs. 85.0%, P = 0.096). For location analysis, there were no significant differences in AUCs between the models (sextant-level, 0.895 vs. 0.893, P = 0.777; zone-level, 0.931 vs. 0.917, P = 0.282), and both models had significantly higher AUCs than the PI-RADS assessment (sextant-level, 0.734; zone-level, 0.863).The diffusion model achieved the best performance in detecting and localizing csPCa in patients with PSA levels of 4-10 ng/mL.3 TECHNICAL EFFICACY: Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nanananan发布了新的文献求助10
4秒前
9秒前
Sophia发布了新的文献求助10
12秒前
Metastasis完成签到,获得积分10
13秒前
芒果完成签到,获得积分10
14秒前
如初发布了新的文献求助10
14秒前
俭朴的跳跳糖完成签到 ,获得积分10
14秒前
15秒前
15秒前
yue完成签到 ,获得积分10
18秒前
芒果发布了新的文献求助10
18秒前
19秒前
小管发布了新的文献求助10
20秒前
20秒前
21秒前
22秒前
栀初发布了新的文献求助10
24秒前
轩辕冰夏发布了新的文献求助200
26秒前
东方欲晓发布了新的文献求助10
26秒前
Xshirley205发布了新的文献求助30
26秒前
依然灬聆听完成签到,获得积分10
27秒前
小管完成签到,获得积分10
27秒前
lss发布了新的文献求助10
27秒前
小郭完成签到,获得积分10
28秒前
深情安青应助粗暴的访天采纳,获得10
29秒前
29秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
搜集达人应助科研通管家采纳,获得10
30秒前
在水一方应助科研通管家采纳,获得10
30秒前
小二郎应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
小郭发布了新的文献求助10
31秒前
Owen应助downdown采纳,获得10
31秒前
yuan完成签到,获得积分10
33秒前
慕青应助如初采纳,获得10
34秒前
35秒前
36秒前
隐形曼青应助潘榆采纳,获得10
36秒前
37秒前
张鱼小丸子完成签到,获得积分10
38秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207538
求助须知:如何正确求助?哪些是违规求助? 2856919
关于积分的说明 8107670
捐赠科研通 2522398
什么是DOI,文献DOI怎么找? 1355582
科研通“疑难数据库(出版商)”最低求助积分说明 642234
邀请新用户注册赠送积分活动 613522