已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Magnetic resonance imaging assessments for knee segmentation and their use in combination with machine/deep learning as predictors of early osteoarthritis diagnosis and prognosis

磁共振成像 医学 骨关节炎 深度学习 机器学习 人工智能 叙述性评论 膝关节 痹症科 放射科 计算机科学 病理 外科 重症监护医学 替代医学
作者
Johanne Martel‐Pelletier,Patrice Paiement,Jean‐Pierre Pelletier
出处
期刊:Therapeutic Advances in Musculoskeletal Disease [SAGE]
卷期号:15: 1759720X2311655-1759720X2311655 被引量:7
标识
DOI:10.1177/1759720x231165560
摘要

Knee osteoarthritis (OA) is a prevalent and disabling disease that can develop over decades. This disease is heterogeneous and involves structural changes in the whole joint, encompassing multiple tissue types. Detecting OA before the onset of irreversible changes is crucial for early management, and this could be achieved by allowing knee tissue visualization and quantifying their changes over time. Although some imaging modalities are available for knee structure assessment, magnetic resonance imaging (MRI) is preferred. This narrative review looks at existing literature, first on MRI-developed approaches for evaluating knee articular tissues, and second on prediction using machine/deep-learning-based methodologies and MRI as input or outcome for early OA diagnosis and prognosis. A substantial number of MRI methodologies have been developed to assess several knee tissues in a semi-quantitative and quantitative fashion using manual, semi-automated and fully automated systems. This dynamic field has grown substantially since the advent of machine/deep learning. Another active area is predictive modelling using machine/deep-learning methodologies enabling robust early OA diagnosis/prognosis. Moreover, incorporating MRI markers as input/outcome in such predictive models is important for a more accurate OA structural diagnosis/prognosis. The main limitation of their usage is the ability to move them in rheumatology practice. In conclusion, MRI knee tissue determination and quantification provide early indicators for individuals at high risk of developing this disease or for patient prognosis. Such assessment of knee tissues, combined with the development of models/tools from machine/deep learning using, in addition to other parameters, MRI markers for early diagnosis/prognosis, will maximize opportunities for individualized risk assessment for use in clinical practice permitting precision medicine. Future efforts should be made to integrate such prediction models into open access, allowing early disease management to prevent or delay the OA outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助MOF采纳,获得10
3秒前
所所应助海潮采纳,获得10
6秒前
9秒前
Henry给研友_LBrm9L的求助进行了留言
10秒前
11秒前
hai完成签到,获得积分20
13秒前
gb发布了新的文献求助10
13秒前
15秒前
田様应助LL采纳,获得10
16秒前
17秒前
tengzijing关注了科研通微信公众号
18秒前
19秒前
李健的粉丝团团长应助LLQ采纳,获得10
21秒前
孤独的涵柳完成签到 ,获得积分10
22秒前
亚当寇克发布了新的文献求助10
23秒前
24秒前
Autumn完成签到 ,获得积分10
25秒前
啊哈哈完成签到,获得积分10
26秒前
zxclax完成签到,获得积分20
26秒前
有魅力的发卡完成签到,获得积分10
28秒前
zxclax发布了新的文献求助10
29秒前
29秒前
LPL完成签到 ,获得积分10
30秒前
31秒前
LPL关注了科研通微信公众号
33秒前
34秒前
36秒前
36秒前
LLQ发布了新的文献求助10
36秒前
久而久之完成签到 ,获得积分10
38秒前
千迁jiu关注了科研通微信公众号
39秒前
亚当寇克完成签到,获得积分10
39秒前
英俊的铭应助晴云采纳,获得10
40秒前
苏小喵发布了新的文献求助10
42秒前
甜蜜代双完成签到 ,获得积分10
42秒前
669完成签到,获得积分10
45秒前
棉袄完成签到 ,获得积分10
47秒前
oceanao应助guanyu108采纳,获得10
47秒前
49秒前
52秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158476
求助须知:如何正确求助?哪些是违规求助? 2809636
关于积分的说明 7883011
捐赠科研通 2468293
什么是DOI,文献DOI怎么找? 1314048
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601956