亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Forecasting hourly attraction tourist volume with search engine and social media data for decision support

旅游 北京 体积热力学 计算机科学 社会化媒体 旅游胜地 基线(sea) 数据挖掘 人工智能 地理 万维网 中国 物理 考古 量子力学 海洋学 地质学
作者
Gang Xue,Shifeng Liu,Long Ren,Daqing Gong
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (4): 103399-103399 被引量:23
标识
DOI:10.1016/j.ipm.2023.103399
摘要

Developing a tourism forecasting function in decision support systems has become critical for businesses and governments. The existing forecasting models considering spatial relations contain insufficient information, and the spatial aggregation of simple tourist volume series limits the forecasting accuracy. Using human-generated search engines and social media data has the potential to address this issue. In this paper, a spatial aggregation-based multimodal deep learning method for hourly attraction tourist volume forecasting is developed. The model first extracts the daily features of attractions from search engine data; then mines the spatial aggregation relationships in social media data and multi-attraction tourist volume data. Finally, the model fuses hourly features with daily features to make forecasting. The model is tested using a dataset containing several attractions with real-time tourist volume at 15-minute intervals from November 27, 2018, to March 18, 2019, in Beijing. And the empirical and Diebold-Mariano test results demonstrate that the proposed framework can outperform state-of-the-art baseline models with statistically significant improvements at the 1% level. Compared with the best baseline model, the MAPE values are reduced by 50.0% and 27.3% in 4A attractions and 5A attractions, respectively; and the RMSE values are reduced by 48.3% and 26.1%, respectively. The method in this paper can be used as a function embedded in the decision support system to help multi-department collaboration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助Cmqq采纳,获得10
4秒前
周三完成签到 ,获得积分10
10秒前
su完成签到 ,获得积分10
14秒前
白羽丫完成签到,获得积分10
18秒前
充电宝应助苏幕遮采纳,获得10
19秒前
21秒前
25秒前
土豆你个西红柿完成签到 ,获得积分10
39秒前
zzzllove完成签到 ,获得积分10
41秒前
nhzz2023完成签到 ,获得积分0
45秒前
46秒前
可爱的函函应助喜宝采纳,获得10
46秒前
追寻的纸鹤完成签到 ,获得积分10
46秒前
Cmqq发布了新的文献求助10
50秒前
小二郎应助Cmqq采纳,获得10
1分钟前
123321完成签到 ,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
淡淡依白完成签到 ,获得积分10
1分钟前
ktw完成签到,获得积分10
1分钟前
1分钟前
小福星饼干完成签到 ,获得积分10
1分钟前
wangyue完成签到 ,获得积分10
1分钟前
喜宝发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
夜雨完成签到,获得积分10
1分钟前
小马甲应助小新采纳,获得10
1分钟前
喜宝完成签到,获得积分20
1分钟前
小小科研牛马完成签到 ,获得积分10
1分钟前
深情安青应助爱笑的大开采纳,获得10
1分钟前
FashionBoy应助喜宝采纳,获得10
1分钟前
1分钟前
兮兮完成签到 ,获得积分10
1分钟前
小橙子完成签到 ,获得积分10
1分钟前
水牛完成签到,获得积分10
1分钟前
1分钟前
Cmqq发布了新的文献求助10
1分钟前
2分钟前
只想发财完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599726
求助须知:如何正确求助?哪些是违规求助? 4685467
关于积分的说明 14838489
捐赠科研通 4670150
什么是DOI,文献DOI怎么找? 2538175
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898