Forecasting hourly attraction tourist volume with search engine and social media data for decision support

旅游 北京 体积热力学 计算机科学 社会化媒体 旅游胜地 基线(sea) 数据挖掘 人工智能 地理 万维网 中国 物理 考古 量子力学 海洋学 地质学
作者
Gang Xue,Shifeng Liu,Long Ren,Daqing Gong
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:60 (4): 103399-103399 被引量:23
标识
DOI:10.1016/j.ipm.2023.103399
摘要

Developing a tourism forecasting function in decision support systems has become critical for businesses and governments. The existing forecasting models considering spatial relations contain insufficient information, and the spatial aggregation of simple tourist volume series limits the forecasting accuracy. Using human-generated search engines and social media data has the potential to address this issue. In this paper, a spatial aggregation-based multimodal deep learning method for hourly attraction tourist volume forecasting is developed. The model first extracts the daily features of attractions from search engine data; then mines the spatial aggregation relationships in social media data and multi-attraction tourist volume data. Finally, the model fuses hourly features with daily features to make forecasting. The model is tested using a dataset containing several attractions with real-time tourist volume at 15-minute intervals from November 27, 2018, to March 18, 2019, in Beijing. And the empirical and Diebold-Mariano test results demonstrate that the proposed framework can outperform state-of-the-art baseline models with statistically significant improvements at the 1% level. Compared with the best baseline model, the MAPE values are reduced by 50.0% and 27.3% in 4A attractions and 5A attractions, respectively; and the RMSE values are reduced by 48.3% and 26.1%, respectively. The method in this paper can be used as a function embedded in the decision support system to help multi-department collaboration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿伟1999发布了新的文献求助50
4秒前
偏偏意气用事完成签到,获得积分10
5秒前
8秒前
自信的高山完成签到,获得积分10
9秒前
温荆发布了新的文献求助10
10秒前
ybb完成签到,获得积分10
11秒前
Orange应助zyk采纳,获得10
11秒前
13秒前
在水一方应助111采纳,获得10
14秒前
文艺谷蓝发布了新的文献求助10
14秒前
搜集达人应助hgl采纳,获得10
17秒前
吉安娜完成签到,获得积分10
17秒前
18秒前
zzz给zzz的求助进行了留言
19秒前
董晨颖完成签到,获得积分10
20秒前
Rainielove0215完成签到,获得积分0
23秒前
23秒前
24秒前
24秒前
25秒前
25秒前
所所应助whyan采纳,获得10
28秒前
堃kun发布了新的文献求助10
28秒前
111发布了新的文献求助10
28秒前
29秒前
学fei了吗完成签到,获得积分10
29秒前
小牛发布了新的文献求助50
29秒前
共享精神应助山山采纳,获得10
32秒前
小二郎应助单摆采纳,获得10
32秒前
puhui完成签到,获得积分10
33秒前
Yu2507完成签到 ,获得积分10
33秒前
34秒前
puhui发布了新的文献求助10
37秒前
39秒前
yyyyyyyyyyyiiii完成签到 ,获得积分10
39秒前
祎个耀学生完成签到,获得积分10
40秒前
40秒前
114514完成签到 ,获得积分20
41秒前
42秒前
单摆发布了新的文献求助10
45秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999175
求助须知:如何正确求助?哪些是违规求助? 3538547
关于积分的说明 11274517
捐赠科研通 3277430
什么是DOI,文献DOI怎么找? 1807585
邀请新用户注册赠送积分活动 883948
科研通“疑难数据库(出版商)”最低求助积分说明 810080