Forecasting hourly attraction tourist volume with search engine and social media data for decision support

旅游 北京 体积热力学 计算机科学 社会化媒体 旅游胜地 基线(sea) 数据挖掘 人工智能 地理 万维网 中国 物理 考古 量子力学 海洋学 地质学
作者
Gang Xue,Shifeng Liu,Long Ren,Daqing Gong
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (4): 103399-103399 被引量:23
标识
DOI:10.1016/j.ipm.2023.103399
摘要

Developing a tourism forecasting function in decision support systems has become critical for businesses and governments. The existing forecasting models considering spatial relations contain insufficient information, and the spatial aggregation of simple tourist volume series limits the forecasting accuracy. Using human-generated search engines and social media data has the potential to address this issue. In this paper, a spatial aggregation-based multimodal deep learning method for hourly attraction tourist volume forecasting is developed. The model first extracts the daily features of attractions from search engine data; then mines the spatial aggregation relationships in social media data and multi-attraction tourist volume data. Finally, the model fuses hourly features with daily features to make forecasting. The model is tested using a dataset containing several attractions with real-time tourist volume at 15-minute intervals from November 27, 2018, to March 18, 2019, in Beijing. And the empirical and Diebold-Mariano test results demonstrate that the proposed framework can outperform state-of-the-art baseline models with statistically significant improvements at the 1% level. Compared with the best baseline model, the MAPE values are reduced by 50.0% and 27.3% in 4A attractions and 5A attractions, respectively; and the RMSE values are reduced by 48.3% and 26.1%, respectively. The method in this paper can be used as a function embedded in the decision support system to help multi-department collaboration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃的问玉完成签到,获得积分20
刚刚
刚刚
航hang完成签到,获得积分10
1秒前
大西瓜发布了新的文献求助10
1秒前
干净的寄风关注了科研通微信公众号
1秒前
ryh完成签到,获得积分10
1秒前
放开让我学习完成签到,获得积分10
2秒前
2秒前
tangli完成签到 ,获得积分10
2秒前
老婆婆不讲理完成签到,获得积分10
3秒前
xxs发布了新的文献求助10
4秒前
航hang发布了新的文献求助10
4秒前
4秒前
西西完成签到,获得积分10
5秒前
5秒前
LiLiuli应助饱满贞采纳,获得10
5秒前
千千完成签到,获得积分20
5秒前
外向白昼发布了新的文献求助10
6秒前
6秒前
ShawnJohn应助mojito采纳,获得10
7秒前
高挑的冷菱完成签到,获得积分10
7秒前
淡淡谷兰完成签到,获得积分20
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
雾里无他完成签到,获得积分10
9秒前
9秒前
9秒前
研友_8WdzPL发布了新的文献求助10
10秒前
满意黑夜完成签到,获得积分10
11秒前
亭中君发布了新的文献求助10
11秒前
李啦啦发布了新的文献求助10
12秒前
张贵虎完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
快乐的小胖完成签到,获得积分20
12秒前
夏夏完成签到,获得积分20
13秒前
852应助笨笨的含莲采纳,获得10
13秒前
FXL完成签到,获得积分10
13秒前
Fran07发布了新的文献求助10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692514
求助须知:如何正确求助?哪些是违规求助? 5088556
关于积分的说明 15208452
捐赠科研通 4849737
什么是DOI,文献DOI怎么找? 2601255
邀请新用户注册赠送积分活动 1553028
关于科研通互助平台的介绍 1511271