Forecasting hourly attraction tourist volume with search engine and social media data for decision support

旅游 北京 体积热力学 计算机科学 社会化媒体 旅游胜地 基线(sea) 数据挖掘 人工智能 地理 万维网 中国 物理 考古 量子力学 海洋学 地质学
作者
Gang Xue,Shifeng Liu,Long Ren,Daqing Gong
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (4): 103399-103399 被引量:23
标识
DOI:10.1016/j.ipm.2023.103399
摘要

Developing a tourism forecasting function in decision support systems has become critical for businesses and governments. The existing forecasting models considering spatial relations contain insufficient information, and the spatial aggregation of simple tourist volume series limits the forecasting accuracy. Using human-generated search engines and social media data has the potential to address this issue. In this paper, a spatial aggregation-based multimodal deep learning method for hourly attraction tourist volume forecasting is developed. The model first extracts the daily features of attractions from search engine data; then mines the spatial aggregation relationships in social media data and multi-attraction tourist volume data. Finally, the model fuses hourly features with daily features to make forecasting. The model is tested using a dataset containing several attractions with real-time tourist volume at 15-minute intervals from November 27, 2018, to March 18, 2019, in Beijing. And the empirical and Diebold-Mariano test results demonstrate that the proposed framework can outperform state-of-the-art baseline models with statistically significant improvements at the 1% level. Compared with the best baseline model, the MAPE values are reduced by 50.0% and 27.3% in 4A attractions and 5A attractions, respectively; and the RMSE values are reduced by 48.3% and 26.1%, respectively. The method in this paper can be used as a function embedded in the decision support system to help multi-department collaboration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芋头完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
3秒前
赘婿应助chiweiyoung采纳,获得10
4秒前
5秒前
小二郎应助自信的采纳,获得10
5秒前
桐桐应助yyyyy采纳,获得10
5秒前
木头应助雨上悲采纳,获得10
5秒前
6秒前
依紫发布了新的文献求助10
7秒前
FashionBoy应助yaya采纳,获得10
8秒前
9秒前
luoluo发布了新的文献求助10
10秒前
ZHTNL完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
酷波er应助寄凡采纳,获得10
11秒前
Ava应助寄凡采纳,获得10
12秒前
自信的发布了新的文献求助10
12秒前
13秒前
ZHTNL发布了新的文献求助10
13秒前
14秒前
天空之下完成签到,获得积分10
15秒前
Yuanyuan发布了新的文献求助10
15秒前
adria完成签到,获得积分10
15秒前
hug完成签到,获得积分0
15秒前
17秒前
阿南发布了新的文献求助10
19秒前
直率的芫发布了新的文献求助10
19秒前
19秒前
20秒前
Z_Z完成签到,获得积分10
20秒前
April发布了新的文献求助30
21秒前
21秒前
顾矜应助D-Peng采纳,获得10
22秒前
我是老大应助寒酥采纳,获得10
22秒前
斯文败类应助果酱采纳,获得10
23秒前
23秒前
24秒前
guo发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729141
求助须知:如何正确求助?哪些是违规求助? 5316369
关于积分的说明 15315857
捐赠科研通 4876150
什么是DOI,文献DOI怎么找? 2619263
邀请新用户注册赠送积分活动 1568820
关于科研通互助平台的介绍 1525317