Forecasting hourly attraction tourist volume with search engine and social media data for decision support

旅游 北京 体积热力学 计算机科学 社会化媒体 旅游胜地 基线(sea) 数据挖掘 人工智能 地理 万维网 中国 物理 考古 量子力学 海洋学 地质学
作者
Gang Xue,Shifeng Liu,Long Ren,Daqing Gong
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (4): 103399-103399 被引量:23
标识
DOI:10.1016/j.ipm.2023.103399
摘要

Developing a tourism forecasting function in decision support systems has become critical for businesses and governments. The existing forecasting models considering spatial relations contain insufficient information, and the spatial aggregation of simple tourist volume series limits the forecasting accuracy. Using human-generated search engines and social media data has the potential to address this issue. In this paper, a spatial aggregation-based multimodal deep learning method for hourly attraction tourist volume forecasting is developed. The model first extracts the daily features of attractions from search engine data; then mines the spatial aggregation relationships in social media data and multi-attraction tourist volume data. Finally, the model fuses hourly features with daily features to make forecasting. The model is tested using a dataset containing several attractions with real-time tourist volume at 15-minute intervals from November 27, 2018, to March 18, 2019, in Beijing. And the empirical and Diebold-Mariano test results demonstrate that the proposed framework can outperform state-of-the-art baseline models with statistically significant improvements at the 1% level. Compared with the best baseline model, the MAPE values are reduced by 50.0% and 27.3% in 4A attractions and 5A attractions, respectively; and the RMSE values are reduced by 48.3% and 26.1%, respectively. The method in this paper can be used as a function embedded in the decision support system to help multi-department collaboration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
斯文败类应助ldroc采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
undo发布了新的文献求助10
2秒前
科研通AI6应助喜多采纳,获得10
2秒前
3秒前
4秒前
baifeng发布了新的文献求助30
4秒前
luwenbin完成签到,获得积分10
4秒前
司佳雨给司佳雨的求助进行了留言
5秒前
5秒前
gggkky发布了新的文献求助20
6秒前
透心凉1987完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
执着的采枫完成签到 ,获得积分10
9秒前
ranjeah完成签到 ,获得积分10
9秒前
希喵子完成签到 ,获得积分20
10秒前
10秒前
Yuan发布了新的文献求助30
10秒前
寇博翔发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
12秒前
薛琴完成签到,获得积分10
13秒前
baifeng完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
科研通AI6应助柒柒采纳,获得10
14秒前
15秒前
15秒前
15秒前
zhang发布了新的文献求助10
15秒前
缓慢寄翠给缓慢寄翠的求助进行了留言
15秒前
周小凡发布了新的文献求助20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465550
求助须知:如何正确求助?哪些是违规求助? 4569781
关于积分的说明 14321124
捐赠科研通 4496282
什么是DOI,文献DOI怎么找? 2463209
邀请新用户注册赠送积分活动 1452179
关于科研通互助平台的介绍 1427336