Forecasting hourly attraction tourist volume with search engine and social media data for decision support

旅游 北京 体积热力学 计算机科学 社会化媒体 旅游胜地 基线(sea) 数据挖掘 人工智能 地理 万维网 中国 物理 考古 量子力学 海洋学 地质学
作者
Gang Xue,Shifeng Liu,Long Ren,Daqing Gong
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (4): 103399-103399 被引量:23
标识
DOI:10.1016/j.ipm.2023.103399
摘要

Developing a tourism forecasting function in decision support systems has become critical for businesses and governments. The existing forecasting models considering spatial relations contain insufficient information, and the spatial aggregation of simple tourist volume series limits the forecasting accuracy. Using human-generated search engines and social media data has the potential to address this issue. In this paper, a spatial aggregation-based multimodal deep learning method for hourly attraction tourist volume forecasting is developed. The model first extracts the daily features of attractions from search engine data; then mines the spatial aggregation relationships in social media data and multi-attraction tourist volume data. Finally, the model fuses hourly features with daily features to make forecasting. The model is tested using a dataset containing several attractions with real-time tourist volume at 15-minute intervals from November 27, 2018, to March 18, 2019, in Beijing. And the empirical and Diebold-Mariano test results demonstrate that the proposed framework can outperform state-of-the-art baseline models with statistically significant improvements at the 1% level. Compared with the best baseline model, the MAPE values are reduced by 50.0% and 27.3% in 4A attractions and 5A attractions, respectively; and the RMSE values are reduced by 48.3% and 26.1%, respectively. The method in this paper can be used as a function embedded in the decision support system to help multi-department collaboration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
老迟到的从波完成签到,获得积分20
1秒前
zz发布了新的文献求助10
1秒前
yeeming应助粉蒸肉采纳,获得10
1秒前
虚幻百川应助12采纳,获得10
1秒前
xxfsx应助粉蒸肉采纳,获得10
1秒前
幸运发布了新的文献求助10
2秒前
2秒前
2秒前
Hinsen应助知鸢采纳,获得10
2秒前
2秒前
烟花应助wang采纳,获得10
2秒前
3秒前
3秒前
3秒前
顾矜应助薛晓博采纳,获得10
4秒前
美好的山槐完成签到,获得积分10
5秒前
caicai发布了新的文献求助10
5秒前
CipherSage应助小巧小丸子采纳,获得10
6秒前
6秒前
朴素静白完成签到,获得积分20
6秒前
cx发布了新的文献求助10
6秒前
6秒前
红岚幽客完成签到,获得积分10
6秒前
槿一发布了新的文献求助10
6秒前
传奇3应助beibei111采纳,获得10
6秒前
7秒前
赵川发布了新的文献求助10
7秒前
共享精神应助矮小的海豚采纳,获得10
7秒前
joestar发布了新的文献求助30
7秒前
Wenmina完成签到 ,获得积分10
8秒前
小谢发布了新的文献求助10
8秒前
crobro应助kkkkfox采纳,获得10
8秒前
wanci应助化雪彼岸采纳,获得10
8秒前
bubble完成签到,获得积分10
8秒前
小启完成签到,获得积分10
9秒前
搞搞学术吧完成签到,获得积分10
9秒前
10秒前
wang完成签到,获得积分10
10秒前
风中从丹完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513050
求助须知:如何正确求助?哪些是违规求助? 4607382
关于积分的说明 14504952
捐赠科研通 4542911
什么是DOI,文献DOI怎么找? 2489237
邀请新用户注册赠送积分活动 1471256
关于科研通互助平台的介绍 1443307