Forecasting hourly attraction tourist volume with search engine and social media data for decision support

旅游 北京 体积热力学 计算机科学 社会化媒体 旅游胜地 基线(sea) 数据挖掘 人工智能 地理 万维网 中国 物理 考古 量子力学 海洋学 地质学
作者
Gang Xue,Shifeng Liu,Long Ren,Daqing Gong
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (4): 103399-103399 被引量:23
标识
DOI:10.1016/j.ipm.2023.103399
摘要

Developing a tourism forecasting function in decision support systems has become critical for businesses and governments. The existing forecasting models considering spatial relations contain insufficient information, and the spatial aggregation of simple tourist volume series limits the forecasting accuracy. Using human-generated search engines and social media data has the potential to address this issue. In this paper, a spatial aggregation-based multimodal deep learning method for hourly attraction tourist volume forecasting is developed. The model first extracts the daily features of attractions from search engine data; then mines the spatial aggregation relationships in social media data and multi-attraction tourist volume data. Finally, the model fuses hourly features with daily features to make forecasting. The model is tested using a dataset containing several attractions with real-time tourist volume at 15-minute intervals from November 27, 2018, to March 18, 2019, in Beijing. And the empirical and Diebold-Mariano test results demonstrate that the proposed framework can outperform state-of-the-art baseline models with statistically significant improvements at the 1% level. Compared with the best baseline model, the MAPE values are reduced by 50.0% and 27.3% in 4A attractions and 5A attractions, respectively; and the RMSE values are reduced by 48.3% and 26.1%, respectively. The method in this paper can be used as a function embedded in the decision support system to help multi-department collaboration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无私路人完成签到,获得积分20
刚刚
1秒前
1秒前
zhiou完成签到,获得积分10
1秒前
Hello应助Sam十九采纳,获得10
1秒前
伶俐冷玉发布了新的文献求助10
1秒前
2秒前
酷波er应助小野猫采纳,获得10
2秒前
所所应助俏皮的豌豆采纳,获得10
2秒前
jiexika完成签到,获得积分10
2秒前
3秒前
恨安完成签到,获得积分10
3秒前
可爱的函函应助李小伟采纳,获得10
3秒前
4秒前
无私路人发布了新的文献求助10
4秒前
4秒前
xuuuuu完成签到,获得积分10
4秒前
明理的喵完成签到,获得积分10
6秒前
6秒前
6秒前
zpctx发布了新的文献求助10
7秒前
WUHUDASM发布了新的文献求助30
7秒前
阿飞发布了新的文献求助10
7秒前
5430完成签到,获得积分10
7秒前
义气的面包完成签到,获得积分10
8秒前
bkagyin应助ping采纳,获得10
8秒前
8秒前
8秒前
9秒前
箫涵发布了新的文献求助10
9秒前
Tomjuice发布了新的文献求助10
9秒前
9秒前
搜集达人应助xiaoxu采纳,获得10
9秒前
小远远应助优美平凡采纳,获得10
9秒前
10秒前
10秒前
吃面包的熊猫完成签到,获得积分10
10秒前
10秒前
JamesPei应助恨安采纳,获得30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609245
求助须知:如何正确求助?哪些是违规求助? 4693936
关于积分的说明 14880129
捐赠科研通 4719328
什么是DOI,文献DOI怎么找? 2544681
邀请新用户注册赠送积分活动 1509622
关于科研通互助平台的介绍 1472935