光热治疗
光热效应
一氧化氮
伤口愈合
纳米复合材料
抗菌活性
化学
纳米技术
体内
体外
介孔材料
精氨酸
材料科学
生物物理学
细菌
生物化学
医学
免疫学
生物
有机化学
生物技术
遗传学
催化作用
氨基酸
作者
Shuqing Xiang,Mingqian Wang,Li Li,Jian Shen
标识
DOI:10.1016/j.colsurfb.2023.113332
摘要
The gas therapy of some endogenous signaling molecules to treat diseases has caused extensive research, among which NO gas has shown great potential in fighting infection with various pathogens, promoting wound healing, etc. Here, we propose a photothermal/photodynamic/NO synergistic antibacterial nanoplatform by loading L-arginine (LA) on mesoporous TiO2 and then encapsulating it with polydopamine. The obtained TiO2-x-LA@PDA nanocomposite possesses both the excellent photothermal effect and ROS generation ability of mesoporous TiO2, and the release of nitric oxide (NO) from L-arginine under near-infrared (NIR) light irradiation, while the sealing layer of PDA could induce NIR-triggered NO controlled release. In vitro antibacterial experiments confirmed that the synergistic effect of TiO2-x-LA@PDA nanocomposites has excellent antibacterial effects against Gram-negative and Gram-positive bacteria, while in vivo experiments showed that it has lower toxicity. It is worth noting that compared with the pure photothermal effect and ROS, the generated NO showed a better bactericidal effect, and NO had a better ability to promote wound healing. In conclusion, the developed TiO2-x-LA@PDA nanoplatform can be used as a nanoantibacterial agent, which can be further explored in the related biomedical field of photothermal activation of multimodal combined antibacterial therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI