Evolutionary Reinforcement Learning: A Survey

强化学习 计算机科学 可扩展性 超参数 人工智能 人口 机器学习 领域(数学) 数据科学 数学 数据库 社会学 人口学 纯数学
作者
Hui Bai,Ran Cheng,Yaochu Jin
标识
DOI:10.34133/icomputing.0025
摘要

Reinforcement learning (RL) is a machine learning approach that trains agents to maximize cumulative rewards through interactions with environments. The integration of RL with deep learning has recently resulted in impressive achievements in a wide range of challenging tasks, including board games, arcade games, and robot control. Despite these successes, several critical challenges remain, such as brittle convergence properties caused by sensitive hyperparameters, difficulties in temporal credit assignment with long time horizons and sparse rewards, a lack of diverse exploration, particularly in continuous search space scenarios, challenges in credit assignment in multi-agent RL, and conflicting objectives for rewards. Evolutionary computation (EC), which maintains a population of learning agents, has demonstrated promising performance in addressing these limitations. This article presents a comprehensive survey of state-of-the-art methods for integrating EC into RL, referred to as evolutionary reinforcement learning (EvoRL). We categorize EvoRL methods according to key research areas in RL, including hyperparameter optimization, policy search, exploration, reward shaping, meta-RL, and multi-objective RL. We then discuss future research directions in terms of efficient methods, benchmarks, and scalable platforms. This survey serves as a resource for researchers and practitioners interested in the field of EvoRL, highlighting the important challenges and opportunities for future research. With the help of this survey, researchers and practitioners can develop more efficient methods and tailored benchmarks for EvoRL, further advancing this promising cross-disciplinary research field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喵呜完成签到,获得积分20
1秒前
章鱼哥完成签到,获得积分10
1秒前
zhangqq完成签到,获得积分10
4秒前
咯噔完成签到,获得积分10
6秒前
林钰浩完成签到,获得积分10
6秒前
不觉晚风完成签到,获得积分10
7秒前
8秒前
追寻的忆山完成签到,获得积分10
10秒前
白芍完成签到,获得积分10
11秒前
今后应助哈比人linling采纳,获得10
13秒前
帅气的如豹完成签到,获得积分20
16秒前
华仔应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
大个应助科研通管家采纳,获得10
19秒前
万刈应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得30
19秒前
科目三应助科研通管家采纳,获得10
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
20秒前
明越发布了新的文献求助30
20秒前
20秒前
23秒前
李健的粉丝团团长应助sj采纳,获得10
23秒前
25秒前
镜哥完成签到,获得积分10
26秒前
小明日天发布了新的文献求助10
26秒前
聪慧海蓝完成签到,获得积分10
26秒前
ningasd发布了新的文献求助10
28秒前
28秒前
29秒前
青易完成签到,获得积分10
29秒前
今后应助帅气的如豹采纳,获得10
34秒前
小明日天完成签到,获得积分10
34秒前
chem完成签到,获得积分10
34秒前
35秒前
小星完成签到 ,获得积分10
36秒前
啦啦啦哟完成签到,获得积分10
38秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082546
求助须知:如何正确求助?哪些是违规求助? 2735785
关于积分的说明 7538956
捐赠科研通 2385412
什么是DOI,文献DOI怎么找? 1264844
科研通“疑难数据库(出版商)”最低求助积分说明 612817
版权声明 597672