Evolutionary Reinforcement Learning: A Survey

强化学习 计算机科学 可扩展性 超参数 人工智能 人口 机器学习 领域(数学) 数据科学 数学 数据库 社会学 人口学 纯数学
作者
Hui Bai,Ran Cheng,Yaochu Jin
标识
DOI:10.34133/icomputing.0025
摘要

Reinforcement learning (RL) is a machine learning approach that trains agents to maximize cumulative rewards through interactions with environments. The integration of RL with deep learning has recently resulted in impressive achievements in a wide range of challenging tasks, including board games, arcade games, and robot control. Despite these successes, several critical challenges remain, such as brittle convergence properties caused by sensitive hyperparameters, difficulties in temporal credit assignment with long time horizons and sparse rewards, a lack of diverse exploration, particularly in continuous search space scenarios, challenges in credit assignment in multi-agent RL, and conflicting objectives for rewards. Evolutionary computation (EC), which maintains a population of learning agents, has demonstrated promising performance in addressing these limitations. This article presents a comprehensive survey of state-of-the-art methods for integrating EC into RL, referred to as evolutionary reinforcement learning (EvoRL). We categorize EvoRL methods according to key research areas in RL, including hyperparameter optimization, policy search, exploration, reward shaping, meta-RL, and multi-objective RL. We then discuss future research directions in terms of efficient methods, benchmarks, and scalable platforms. This survey serves as a resource for researchers and practitioners interested in the field of EvoRL, highlighting the important challenges and opportunities for future research. With the help of this survey, researchers and practitioners can develop more efficient methods and tailored benchmarks for EvoRL, further advancing this promising cross-disciplinary research field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yishenpf完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
zszs应助yuchangkun采纳,获得10
3秒前
ZZL完成签到,获得积分10
3秒前
3秒前
4秒前
飞快的稚晴完成签到,获得积分10
5秒前
5秒前
小马甲应助koyo采纳,获得10
5秒前
6秒前
博士早日毕业完成签到,获得积分10
6秒前
6秒前
6秒前
力劈华山完成签到,获得积分10
7秒前
mcs发布了新的文献求助10
7秒前
思源应助司空豁采纳,获得10
7秒前
7秒前
8秒前
8秒前
小东发布了新的文献求助10
9秒前
anitachiu1104发布了新的文献求助10
10秒前
大模型应助胖虎采纳,获得10
10秒前
Fons发布了新的文献求助20
11秒前
英姑应助我是张铁柱·采纳,获得10
12秒前
搜集达人应助老高采纳,获得30
14秒前
14秒前
14秒前
15秒前
所所应助淡淡夕阳采纳,获得10
15秒前
Ghhhhn发布了新的文献求助10
15秒前
丘比特应助ren采纳,获得10
16秒前
16秒前
唠叨的以柳完成签到,获得积分20
16秒前
17秒前
Hello应助颜朗采纳,获得10
18秒前
开放如天发布了新的文献求助10
18秒前
青山随云走完成签到,获得积分10
19秒前
不渝发布了新的文献求助20
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956302
求助须知:如何正确求助?哪些是违规求助? 3502493
关于积分的说明 11108085
捐赠科研通 3233179
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870515
科研通“疑难数据库(出版商)”最低求助积分说明 802105