已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Association between exposure to mixture of heavy metals and hyperlipidemia risk among U.S. adults: A cross-sectional study

高脂血症 逻辑回归 分位数回归 全国健康与营养检查调查 重金属 化学 环境卫生 医学 内科学 环境化学 内分泌学 统计 数学 人口 有机化学 糖尿病
作者
Guosheng Wang,Lanlan Fang,Yuting Chen,Yubo Ma,Hui Zhao,Ye Wu,Shengqian Xu,Guoqi Cai,Faming Pan
出处
期刊:Chemosphere [Elsevier]
卷期号:344: 140334-140334 被引量:23
标识
DOI:10.1016/j.chemosphere.2023.140334
摘要

Previous studies have suggested that exposure to heavy metals might increase the risk of hyperlipidemia. However, limited research has investigated the association between exposure to mixture of heavy metals and hyperlipidemia risk. To explore the independent and combined effects of heavy metal exposure on hyperlipidemia risk, this study involved 3293 participants from the National Health and Nutrition Examination Survey (NHANES), including 2327 with hyperlipidemia and the remaining without. In the individual metal analysis, the logistic regression model confirmed the positive effects of barium (Ba), cadmium (Cd), mercury (Hg), Lead (Pb), and uranium (U) on hyperlipidemia risk, Ba, Cd, Hg and Pb were further validated in restricted cubic splines (RCS) regression model and identified as positive linear relationships. In the metal mixture analysis, weighted quantile sum (WQS) regression, Bayesian kernel machine regression (BKMR), and quantile-based g computation (qgcomp) models consistently revealed a positive correlation between exposure to metal mixture and hyperlipidemia risk, with Ba, Cd, Hg, Pb, and U having significant positive driving roles in the overall effects. These associations were more prominent in young/middle-aged individuals. Moreover, the BKMR model uncovered some interactions between specific heavy metals. In conclusion, this study offers new evidence supporting the link between combined exposure to multiple heavy metals and hyperlipidemia risk, but considering the limitations of this study, further prospective research is required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助科研通管家采纳,获得10
刚刚
null应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
null应助科研通管家采纳,获得10
刚刚
星星亮应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
shhoing应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
阔达契完成签到 ,获得积分10
1秒前
田様应助Ka采纳,获得10
4秒前
张兴华完成签到 ,获得积分20
9秒前
10秒前
11秒前
刘123完成签到,获得积分10
13秒前
orixero应助ho采纳,获得50
14秒前
上好佳完成签到,获得积分10
14秒前
15秒前
15秒前
hk完成签到 ,获得积分20
16秒前
开放如天完成签到 ,获得积分10
16秒前
Whim完成签到,获得积分0
17秒前
Judy发布了新的文献求助10
17秒前
18秒前
小马甲应助搞怪的世德采纳,获得10
23秒前
24秒前
25秒前
25秒前
保护野菠萝完成签到,获得积分20
25秒前
28秒前
小二郎应助Michael采纳,获得10
28秒前
30秒前
31秒前
32秒前
梨_完成签到 ,获得积分10
32秒前
单纯的问安完成签到,获得积分10
32秒前
34秒前
曾经寒香发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538198
求助须知:如何正确求助?哪些是违规求助? 4625382
关于积分的说明 14595848
捐赠科研通 4565994
什么是DOI,文献DOI怎么找? 2502838
邀请新用户注册赠送积分活动 1481193
关于科研通互助平台的介绍 1452435