亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Implementation of A Deep Learning Framework for Intelligent Intrusion Detection in Internet of Things Networks

计算机科学 入侵检测系统 计算机安全 服务拒绝攻击 互联网 深度学习 物联网 边缘计算 人工智能 大数据 政府(语言学) 网络安全 弹性(材料科学) 机器学习 数据挖掘 万维网 哲学 物理 热力学 语言学
作者
S. Jeyapriyanga,Chandrasekar Ravi,R. Rathiya,K. Kalaivani,Rama Devi C,Kallakunta Ravi Kumar
标识
DOI:10.1109/icirca57980.2023.10220736
摘要

Internet of Things (IoT) has ushered in a new age that benefits humanity greatly. From automated healthcare to energy and transportation, the Internet of Things covers many subject topics. IoT devices are vulnerable to several cyberattacks due to their limited resources. As data output has expanded exponentially from a zettabyte to a trillion per year, computer and IoT network expansion has surged. Network growth has created new security issues. In such large data sets, intrusions are hard to spot. Today's networks are used for “smart” dwellings and cities, grids, devices, objects, online commerce, banking, government, etc. Due to internet data privacy and security concerns, Intrusion Detection Systems (IDS) have proliferated. Privacy, security, and resilience would suffer if IDS protection fails. Traditional defences can't handle modern attacks. Cutting-edge deep learning methods may automatically detect intrusions and network anomalies. This study's main goal is to evaluate intrusion detection using deep learning algorithms and compare the outcomes to other systems. This research work has proposed a novel deep-learning-based IoT invasion detection method. The cutting-edge Internet of Things dataset contains IoT traces and real-world attack traffic including DoS, DDoS, data harvesting, and theft attempts. Finally, all publicly available network-based IDS datasets are analyzed in this research study. The accuracy, false alarm rate, recall, precision, f-1 score, and detection rate of many deep learning IDS algorithms have been examined. Furthermore, this research study has investigated the network security and privacy issues and solutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cheryjay发布了新的文献求助10
1秒前
隐形曼青应助小桃耶采纳,获得10
5秒前
cheryjay完成签到,获得积分10
7秒前
李健的小迷弟应助马文玉采纳,获得10
10秒前
Taiga完成签到 ,获得积分10
10秒前
半农应助cheryjay采纳,获得10
11秒前
旺旺完成签到,获得积分10
17秒前
科研通AI6应助SKY采纳,获得10
19秒前
陈chen完成签到 ,获得积分10
22秒前
桐桐应助芷兰丁香采纳,获得10
23秒前
feiCheung完成签到 ,获得积分10
52秒前
52秒前
丘比特应助gqz采纳,获得10
57秒前
lly发布了新的文献求助10
58秒前
Orange应助lly采纳,获得10
1分钟前
摸鱼王完成签到,获得积分10
1分钟前
激昂的如柏完成签到,获得积分10
1分钟前
1分钟前
小猫完成签到 ,获得积分10
1分钟前
sdshi发布了新的文献求助10
1分钟前
精明的信封完成签到,获得积分10
1分钟前
彭进水完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
qq完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
芷兰丁香发布了新的文献求助10
1分钟前
Earr完成签到 ,获得积分10
1分钟前
1分钟前
Fanxq完成签到,获得积分10
2分钟前
今后应助芷兰丁香采纳,获得10
2分钟前
马文玉发布了新的文献求助10
2分钟前
思源应助Fanxq采纳,获得10
2分钟前
威武灵阳完成签到,获得积分10
2分钟前
2分钟前
小桃耶发布了新的文献求助10
2分钟前
2分钟前
ljw完成签到 ,获得积分10
2分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584621
求助须知:如何正确求助?哪些是违规求助? 4668381
关于积分的说明 14771387
捐赠科研通 4611679
什么是DOI,文献DOI怎么找? 2530052
邀请新用户注册赠送积分活动 1498980
关于科研通互助平台的介绍 1467448