Implementation of A Deep Learning Framework for Intelligent Intrusion Detection in Internet of Things Networks

计算机科学 入侵检测系统 计算机安全 服务拒绝攻击 互联网 深度学习 物联网 边缘计算 人工智能 大数据 政府(语言学) 网络安全 弹性(材料科学) 机器学习 数据挖掘 万维网 哲学 物理 热力学 语言学
作者
S. Jeyapriyanga,Chandrasekar Ravi,R. Rathiya,K. Kalaivani,Rama Devi C,Kallakunta Ravi Kumar
标识
DOI:10.1109/icirca57980.2023.10220736
摘要

Internet of Things (IoT) has ushered in a new age that benefits humanity greatly. From automated healthcare to energy and transportation, the Internet of Things covers many subject topics. IoT devices are vulnerable to several cyberattacks due to their limited resources. As data output has expanded exponentially from a zettabyte to a trillion per year, computer and IoT network expansion has surged. Network growth has created new security issues. In such large data sets, intrusions are hard to spot. Today's networks are used for “smart” dwellings and cities, grids, devices, objects, online commerce, banking, government, etc. Due to internet data privacy and security concerns, Intrusion Detection Systems (IDS) have proliferated. Privacy, security, and resilience would suffer if IDS protection fails. Traditional defences can't handle modern attacks. Cutting-edge deep learning methods may automatically detect intrusions and network anomalies. This study's main goal is to evaluate intrusion detection using deep learning algorithms and compare the outcomes to other systems. This research work has proposed a novel deep-learning-based IoT invasion detection method. The cutting-edge Internet of Things dataset contains IoT traces and real-world attack traffic including DoS, DDoS, data harvesting, and theft attempts. Finally, all publicly available network-based IDS datasets are analyzed in this research study. The accuracy, false alarm rate, recall, precision, f-1 score, and detection rate of many deep learning IDS algorithms have been examined. Furthermore, this research study has investigated the network security and privacy issues and solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xin发布了新的文献求助10
2秒前
某慧发布了新的文献求助20
6秒前
糖糖完成签到,获得积分10
7秒前
maoy发布了新的文献求助10
7秒前
7秒前
湘湘完成签到,获得积分10
8秒前
赘婿应助徐雪雯采纳,获得10
10秒前
fdscat发布了新的文献求助10
11秒前
11秒前
科研通AI2S应助活力山蝶采纳,获得10
13秒前
jing发布了新的文献求助20
14秒前
zd发布了新的文献求助10
15秒前
湘湘发布了新的文献求助10
15秒前
awrawsaf发布了新的文献求助10
15秒前
123333发布了新的文献求助10
17秒前
17秒前
zzt完成签到,获得积分10
18秒前
19秒前
20秒前
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
21秒前
MingDong发布了新的文献求助10
22秒前
天天快乐应助123333采纳,获得10
22秒前
研友_r8YgPn发布了新的文献求助10
23秒前
26秒前
26秒前
27秒前
量子星尘发布了新的文献求助10
28秒前
江蹇发布了新的文献求助10
29秒前
wade2016发布了新的文献求助10
30秒前
30秒前
酷酷的冰真应助fdscat采纳,获得10
31秒前
新火发布了新的文献求助10
31秒前
ZZZJW完成签到,获得积分10
33秒前
33秒前
希望天下0贩的0应助妖哥采纳,获得10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959821
求助须知:如何正确求助?哪些是违规求助? 3506056
关于积分的说明 11127696
捐赠科研通 3237994
什么是DOI,文献DOI怎么找? 1789429
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021