Implementation of A Deep Learning Framework for Intelligent Intrusion Detection in Internet of Things Networks

计算机科学 入侵检测系统 计算机安全 服务拒绝攻击 互联网 深度学习 物联网 边缘计算 人工智能 大数据 政府(语言学) 网络安全 弹性(材料科学) 机器学习 数据挖掘 万维网 语言学 哲学 物理 热力学
作者
S. Jeyapriyanga,Chandrasekar Ravi,R. Rathiya,K. Kalaivani,Rama Devi C,Kallakunta Ravi Kumar
标识
DOI:10.1109/icirca57980.2023.10220736
摘要

Internet of Things (IoT) has ushered in a new age that benefits humanity greatly. From automated healthcare to energy and transportation, the Internet of Things covers many subject topics. IoT devices are vulnerable to several cyberattacks due to their limited resources. As data output has expanded exponentially from a zettabyte to a trillion per year, computer and IoT network expansion has surged. Network growth has created new security issues. In such large data sets, intrusions are hard to spot. Today's networks are used for “smart” dwellings and cities, grids, devices, objects, online commerce, banking, government, etc. Due to internet data privacy and security concerns, Intrusion Detection Systems (IDS) have proliferated. Privacy, security, and resilience would suffer if IDS protection fails. Traditional defences can't handle modern attacks. Cutting-edge deep learning methods may automatically detect intrusions and network anomalies. This study's main goal is to evaluate intrusion detection using deep learning algorithms and compare the outcomes to other systems. This research work has proposed a novel deep-learning-based IoT invasion detection method. The cutting-edge Internet of Things dataset contains IoT traces and real-world attack traffic including DoS, DDoS, data harvesting, and theft attempts. Finally, all publicly available network-based IDS datasets are analyzed in this research study. The accuracy, false alarm rate, recall, precision, f-1 score, and detection rate of many deep learning IDS algorithms have been examined. Furthermore, this research study has investigated the network security and privacy issues and solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满的大碗完成签到 ,获得积分10
刚刚
曹小仙男完成签到 ,获得积分10
1秒前
2秒前
李小二发布了新的文献求助10
2秒前
ntxiaohu完成签到,获得积分10
3秒前
3秒前
yumieer完成签到 ,获得积分10
3秒前
anlikek完成签到,获得积分10
6秒前
搞怪的翠萱关注了科研通微信公众号
7秒前
顺利完成签到,获得积分10
7秒前
传奇3应助Ge采纳,获得10
7秒前
呼延子默完成签到,获得积分10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
橘子石榴应助科研通管家采纳,获得30
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
FashionBoy应助wxl采纳,获得10
11秒前
阳光万声发布了新的文献求助10
12秒前
XIXI发布了新的文献求助10
14秒前
小龙完成签到,获得积分10
14秒前
15秒前
15秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165183
求助须知:如何正确求助?哪些是违规求助? 2816187
关于积分的说明 7911845
捐赠科研通 2475930
什么是DOI,文献DOI怎么找? 1318423
科研通“疑难数据库(出版商)”最低求助积分说明 632143
版权声明 602388