Multisequence MRI-based radiomics nomogram for early prediction of osimertinib resistance in patients with non-small cell lung cancer brain metastases

医学 列线图 置信区间 队列 肺癌 无线电技术 肿瘤科 磁共振成像 流体衰减反转恢复 放射科 曲线下面积 内科学 核医学
作者
Xinna Lv,Ye Li,Xiaoyue Xu,Zi‐Wei Zheng,Li Fang,Kun Fang,Yue Wang,Bing Wang,Dailun Hou
出处
期刊:European Journal of Radiology Open [Elsevier BV]
卷期号:11: 100521-100521
标识
DOI:10.1016/j.ejro.2023.100521
摘要

BackgroundOsimertinib resistance is a major problem in the course of targeted therapy for non-small cell lung cancer (NSCLC) patients. To develop and validate a multisequence MRI-based radiomics nomogram for early prediction of osimertinib resistance in NSCLC with brain metastases (BM).MethodsPretreatment brain MRI of 251 NSCLC patients proven with BM were retrospectively enrolled from two centers (training cohort: 196 patients; testing cohort: 55 patients). According to the gene test result of osimertinib resistance, patients were labeled as resistance and non-resistance groups (training cohort: 65 versus 131 patients; testing cohort: 25 versus 30 patients). Radiomics features were extracted from T2WI, T2 fluid-attenuated inversion recovery (T2-FLAIR), diffusion weighted imaging (DWI) and contrast-enhanced T1-weighted imaging (T1-CE) sequences separately and radiomics score (rad-score) were built from the four sequences. Then a multisequence MRI-based nomogram was developed and the predictive ability was evaluated by ROC curves and calibration curves.ResultsThe rad-scores of the four sequences has significant differences between resistance and non-resistance groups in both training and testing cohorts. The nomogram achieved the highest predictive ability with area under the curve (AUC) of 0.989 (95 % confidence interval, 0.976–1.000) and 0.923 (95 % confidence interval, 0.851–0.995) in the training and testing cohort respectively. The calibration curves showed excellent concordance between the predicted and actual probability of osimertinib resistance using the radiomics nomogram.ConclusionsThe multisequence MRI-based radiomics nomogram can be used as a noninvasive auxiliary tool to identify candidates who were resistant to osimertinib, which could guide clinical therapy for NSCLC patients with BM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lin发布了新的文献求助10
1秒前
212发布了新的文献求助10
1秒前
jkdzp完成签到,获得积分10
2秒前
哆小咪完成签到 ,获得积分10
3秒前
12345发布了新的文献求助10
4秒前
科研通AI6应助周城采纳,获得10
4秒前
无心的忆安完成签到,获得积分10
4秒前
星期八的日常完成签到,获得积分10
5秒前
zzj完成签到,获得积分10
5秒前
浮游应助写论文的咸鱼采纳,获得10
5秒前
冷酷秋柳发布了新的文献求助10
6秒前
慕青应助curtain采纳,获得10
6秒前
JASON完成签到,获得积分20
6秒前
李健的粉丝团团长应助lin采纳,获得10
6秒前
默默水蓝发布了新的文献求助10
7秒前
党祥鑫完成签到,获得积分10
7秒前
我是老大应助缺口口采纳,获得10
7秒前
小四喜发布了新的文献求助10
7秒前
8秒前
如常完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
10秒前
无算浮白完成签到,获得积分10
10秒前
Lucas应助张正采纳,获得10
10秒前
11秒前
Donby完成签到,获得积分10
11秒前
12秒前
闪闪的YOSH完成签到,获得积分10
12秒前
皮皮发布了新的文献求助10
13秒前
13秒前
北冥有鱼完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
额狐狸发布了新的文献求助10
15秒前
16秒前
老神在在发布了新的文献求助30
16秒前
千秋入画完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061583
求助须知:如何正确求助?哪些是违规求助? 4285608
关于积分的说明 13355044
捐赠科研通 4103396
什么是DOI,文献DOI怎么找? 2246696
邀请新用户注册赠送积分活动 1252432
关于科研通互助平台的介绍 1183294