已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Coaxiality prediction for aeroengines precision assembly based on geometric distribution error model and point cloud deep learning

点云 套管 点(几何) 过程(计算) 云计算 计算机科学 人工智能 算法 工程类 机械工程 数学 几何学 操作系统
作者
Ke Shang,Tianyi Wu,Xin Jin,Zhijing Zhang,Chaojiang Li,Rui Liu,Min Wang,Wei Dai,Jun Liu
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:71: 681-694 被引量:16
标识
DOI:10.1016/j.jmsy.2023.10.017
摘要

Assembly accuracy of aeroengines influences operation performance and service life. The coaxiality of the aeroengine is the main index of assembly accuracy and is also a core index to represent assembly quality. However, direct measurement of coaxiality is a difficult technical problem due to the sealed structure of the aeroengine casing system. A coaxiality prediction method is proposed to obtain coaxiality and assist assembly by geometric distribution error modeling and point cloud deep learning. The prediction process consists of three steps. In the beginning, the geometric distribution error model is established to construct the accurate dense point cloud of aeroengine part surfaces by the non-uniform rational B-splines (NURBS) method based on the coordinate measuring machine collecting information. Then, the mapping between the dense point cloud and coaxiality is established to obtain an assembly dataset by the virtual assembly. Finally, the dataset is fed to a new point cloud deep learning backbone, Self-channel cross attention point network, and realizes end-to-end coaxiality prediction based on the aeroengine surface point cloud. The geometric distribution error model is tested on the aeroengine simulated parts with 0.001 mm accuracy. The prediction method is verified on the aeroengine simulated parts and compared with other point cloud deep learning baselines. The method proposed in this paper realizes 93.17% prediction accuracy with 0.01 mm coaxiality precision which is a high performance and meets the requirements of industrial measurement. This paper provides an effective coaxiality prediction model for the aeroengine casing system, to improve the accuracy and efficiency of the aeroengine assembly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tjnksy完成签到,获得积分10
刚刚
感动的雁枫完成签到,获得积分10
5秒前
6秒前
花花发布了新的文献求助10
9秒前
10秒前
PAIDAXXXX发布了新的文献求助10
10秒前
12秒前
14秒前
Roy007完成签到,获得积分10
15秒前
Sulfur发布了新的文献求助10
16秒前
科研废柴发布了新的文献求助10
16秒前
19秒前
奋斗的萝发布了新的文献求助10
20秒前
科研通AI6.2应助s_chui采纳,获得10
23秒前
27秒前
Sulfur完成签到,获得积分10
28秒前
32秒前
休斯顿完成签到,获得积分10
35秒前
36秒前
kk_1315完成签到,获得积分0
38秒前
吴雨胡完成签到,获得积分10
40秒前
灰灰完成签到,获得积分10
40秒前
43秒前
卷毛维安完成签到 ,获得积分10
43秒前
哈哈哈完成签到 ,获得积分10
43秒前
44秒前
Crw__完成签到,获得积分10
45秒前
49秒前
DiuO发布了新的文献求助10
50秒前
YUEER发布了新的文献求助10
50秒前
完美世界应助时空星客采纳,获得10
50秒前
zzz发布了新的文献求助10
53秒前
haha完成签到 ,获得积分10
55秒前
56秒前
大气思柔完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
pegasus0802完成签到,获得积分10
1分钟前
奥一奥发布了新的文献求助10
1分钟前
CodeCraft应助能闭嘴吗采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870534
求助须知:如何正确求助?哪些是违规求助? 6463278
关于积分的说明 15664266
捐赠科研通 4986619
什么是DOI,文献DOI怎么找? 2688914
邀请新用户注册赠送积分活动 1631289
关于科研通互助平台的介绍 1589336