Coaxiality prediction for aeroengines precision assembly based on geometric distribution error model and point cloud deep learning

点云 套管 点(几何) 过程(计算) 云计算 计算机科学 人工智能 算法 工程类 机械工程 数学 几何学 操作系统
作者
Ke Shang,Tianyi Wu,Xin Jin,Zhijing Zhang,Chaojiang Li,Rui Liu,Min Wang,Wei Dai,Jun Liu
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:71: 681-694 被引量:6
标识
DOI:10.1016/j.jmsy.2023.10.017
摘要

Assembly accuracy of aeroengines influences operation performance and service life. The coaxiality of the aeroengine is the main index of assembly accuracy and is also a core index to represent assembly quality. However, direct measurement of coaxiality is a difficult technical problem due to the sealed structure of the aeroengine casing system. A coaxiality prediction method is proposed to obtain coaxiality and assist assembly by geometric distribution error modeling and point cloud deep learning. The prediction process consists of three steps. In the beginning, the geometric distribution error model is established to construct the accurate dense point cloud of aeroengine part surfaces by the non-uniform rational B-splines (NURBS) method based on the coordinate measuring machine collecting information. Then, the mapping between the dense point cloud and coaxiality is established to obtain an assembly dataset by the virtual assembly. Finally, the dataset is fed to a new point cloud deep learning backbone, Self-channel cross attention point network, and realizes end-to-end coaxiality prediction based on the aeroengine surface point cloud. The geometric distribution error model is tested on the aeroengine simulated parts with 0.001 mm accuracy. The prediction method is verified on the aeroengine simulated parts and compared with other point cloud deep learning baselines. The method proposed in this paper realizes 93.17% prediction accuracy with 0.01 mm coaxiality precision which is a high performance and meets the requirements of industrial measurement. This paper provides an effective coaxiality prediction model for the aeroengine casing system, to improve the accuracy and efficiency of the aeroengine assembly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助旭爸爸采纳,获得10
刚刚
smileriver完成签到,获得积分10
刚刚
吃水果的老虎完成签到,获得积分10
刚刚
Rahul完成签到,获得积分10
1秒前
勤恳的仰发布了新的文献求助10
1秒前
我独舞完成签到 ,获得积分10
1秒前
FIN应助hwq采纳,获得10
2秒前
一鸣大人发布了新的文献求助10
2秒前
cua完成签到,获得积分10
2秒前
BANG完成签到,获得积分10
2秒前
狄语蕊完成签到,获得积分10
2秒前
OccupyMars2025关注了科研通微信公众号
3秒前
朱凌娇发布了新的文献求助10
3秒前
珍珠糖发布了新的文献求助10
3秒前
优雅盼海发布了新的文献求助10
3秒前
沉淀完成签到,获得积分10
4秒前
科研助手6应助岳凯采纳,获得10
4秒前
kevin完成签到 ,获得积分10
4秒前
5秒前
5秒前
CCCCPUTA完成签到,获得积分10
6秒前
Haonan完成签到,获得积分10
6秒前
Refuel完成签到,获得积分10
6秒前
终梦发布了新的文献求助20
7秒前
积极的如之完成签到,获得积分10
7秒前
7秒前
xueshufengbujue完成签到,获得积分10
7秒前
秋慕蕊发布了新的文献求助10
8秒前
ColinWine完成签到,获得积分10
8秒前
cua发布了新的文献求助20
9秒前
隐形的乐枫完成签到,获得积分10
10秒前
elidan发布了新的文献求助10
10秒前
李健应助Fantansy采纳,获得10
10秒前
樱sky完成签到,获得积分10
10秒前
10秒前
林屿溪完成签到,获得积分10
10秒前
Jupiter完成签到,获得积分10
10秒前
Henry完成签到,获得积分10
10秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009167
求助须知:如何正确求助?哪些是违规求助? 3549013
关于积分的说明 11300491
捐赠科研通 3283494
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886146
科研通“疑难数据库(出版商)”最低求助积分说明 811259