已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Coaxiality prediction for aeroengines precision assembly based on geometric distribution error model and point cloud deep learning

点云 套管 点(几何) 过程(计算) 云计算 计算机科学 人工智能 算法 工程类 机械工程 数学 几何学 操作系统
作者
Ke Shang,Tianyi Wu,Xin Jin,Zhijing Zhang,Chaojiang Li,Rui Liu,Min Wang,Wei Dai,Jun Liu
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:71: 681-694 被引量:16
标识
DOI:10.1016/j.jmsy.2023.10.017
摘要

Assembly accuracy of aeroengines influences operation performance and service life. The coaxiality of the aeroengine is the main index of assembly accuracy and is also a core index to represent assembly quality. However, direct measurement of coaxiality is a difficult technical problem due to the sealed structure of the aeroengine casing system. A coaxiality prediction method is proposed to obtain coaxiality and assist assembly by geometric distribution error modeling and point cloud deep learning. The prediction process consists of three steps. In the beginning, the geometric distribution error model is established to construct the accurate dense point cloud of aeroengine part surfaces by the non-uniform rational B-splines (NURBS) method based on the coordinate measuring machine collecting information. Then, the mapping between the dense point cloud and coaxiality is established to obtain an assembly dataset by the virtual assembly. Finally, the dataset is fed to a new point cloud deep learning backbone, Self-channel cross attention point network, and realizes end-to-end coaxiality prediction based on the aeroengine surface point cloud. The geometric distribution error model is tested on the aeroengine simulated parts with 0.001 mm accuracy. The prediction method is verified on the aeroengine simulated parts and compared with other point cloud deep learning baselines. The method proposed in this paper realizes 93.17% prediction accuracy with 0.01 mm coaxiality precision which is a high performance and meets the requirements of industrial measurement. This paper provides an effective coaxiality prediction model for the aeroengine casing system, to improve the accuracy and efficiency of the aeroengine assembly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极一德完成签到 ,获得积分10
1秒前
CJ关闭了CJ文献求助
2秒前
科研通AI2S应助悠然采纳,获得10
2秒前
刀特左完成签到,获得积分10
2秒前
乳酸菌小面包完成签到,获得积分10
3秒前
5秒前
5秒前
风行域完成签到,获得积分10
6秒前
Monicadd完成签到 ,获得积分10
8秒前
yuanyuan发布了新的文献求助10
9秒前
月冷完成签到 ,获得积分10
10秒前
刀特左发布了新的文献求助10
10秒前
11秒前
学习使勇哥进步完成签到,获得积分10
14秒前
14秒前
研友_8y29gL完成签到,获得积分10
14秒前
我是老大应助yingtao采纳,获得10
15秒前
17秒前
somnus完成签到,获得积分10
17秒前
思源应助何叶采纳,获得10
19秒前
满意妙梦发布了新的文献求助10
19秒前
Summer完成签到 ,获得积分10
20秒前
syanxxxx发布了新的文献求助30
21秒前
yy完成签到,获得积分10
21秒前
yy发布了新的文献求助10
24秒前
26秒前
blackddl完成签到,获得积分0
27秒前
魔幻冰棍完成签到 ,获得积分10
29秒前
Yuki完成签到 ,获得积分10
29秒前
默默襄完成签到 ,获得积分10
32秒前
何叶发布了新的文献求助10
32秒前
626发布了新的文献求助10
36秒前
37秒前
38秒前
敞敞亮亮完成签到 ,获得积分10
39秒前
谨慎山槐完成签到 ,获得积分10
41秒前
体贴代容发布了新的文献求助30
42秒前
娜娜子完成签到 ,获得积分10
43秒前
踏实的哑铃完成签到,获得积分10
43秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599548
求助须知:如何正确求助?哪些是违规求助? 4685229
关于积分的说明 14838214
捐赠科研通 4669062
什么是DOI,文献DOI怎么找? 2538076
邀请新用户注册赠送积分活动 1505449
关于科研通互助平台的介绍 1470833