Coaxiality prediction for aeroengines precision assembly based on geometric distribution error model and point cloud deep learning

点云 套管 点(几何) 过程(计算) 云计算 计算机科学 人工智能 算法 工程类 机械工程 数学 几何学 操作系统
作者
Ke Shang,Tianyi Wu,Xin Jin,Zhijing Zhang,Chaojiang Li,Rui Liu,Min Wang,Wei Dai,Jun Liu
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:71: 681-694 被引量:1
标识
DOI:10.1016/j.jmsy.2023.10.017
摘要

Assembly accuracy of aeroengines influences operation performance and service life. The coaxiality of the aeroengine is the main index of assembly accuracy and is also a core index to represent assembly quality. However, direct measurement of coaxiality is a difficult technical problem due to the sealed structure of the aeroengine casing system. A coaxiality prediction method is proposed to obtain coaxiality and assist assembly by geometric distribution error modeling and point cloud deep learning. The prediction process consists of three steps. In the beginning, the geometric distribution error model is established to construct the accurate dense point cloud of aeroengine part surfaces by the non-uniform rational B-splines (NURBS) method based on the coordinate measuring machine collecting information. Then, the mapping between the dense point cloud and coaxiality is established to obtain an assembly dataset by the virtual assembly. Finally, the dataset is fed to a new point cloud deep learning backbone, Self-channel cross attention point network, and realizes end-to-end coaxiality prediction based on the aeroengine surface point cloud. The geometric distribution error model is tested on the aeroengine simulated parts with 0.001 mm accuracy. The prediction method is verified on the aeroengine simulated parts and compared with other point cloud deep learning baselines. The method proposed in this paper realizes 93.17% prediction accuracy with 0.01 mm coaxiality precision which is a high performance and meets the requirements of industrial measurement. This paper provides an effective coaxiality prediction model for the aeroengine casing system, to improve the accuracy and efficiency of the aeroengine assembly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助科研通管家采纳,获得10
刚刚
俊逸书琴应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
1秒前
asd应助科研通管家采纳,获得50
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
00完成签到,获得积分10
2秒前
3秒前
傲娇的凡旋应助快乐烧鹅采纳,获得10
5秒前
5秒前
Denning完成签到,获得积分10
5秒前
5秒前
6秒前
honphyjiang发布了新的文献求助10
6秒前
さくま完成签到,获得积分10
6秒前
14114发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
伊索寓言发布了新的文献求助10
12秒前
可靠的纸鹤完成签到,获得积分10
13秒前
深情的一曲完成签到,获得积分10
13秒前
16秒前
元问晴发布了新的文献求助10
16秒前
斯文败类应助cjh采纳,获得10
16秒前
zzmm发布了新的文献求助30
21秒前
领导范儿应助hhha采纳,获得10
24秒前
Alicia完成签到,获得积分10
26秒前
元问晴完成签到,获得积分10
28秒前
你帅你有理完成签到,获得积分10
29秒前
29秒前
29秒前
仰望完成签到,获得积分20
30秒前
快乐小子发布了新的文献求助10
30秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339768
求助须知:如何正确求助?哪些是违规求助? 2967834
关于积分的说明 8631141
捐赠科研通 2647309
什么是DOI,文献DOI怎么找? 1449590
科研通“疑难数据库(出版商)”最低求助积分说明 671464
邀请新用户注册赠送积分活动 660434