Predicting the effects of mutations on protein solubility using graph convolution network and protein language model representation

溶解度 水准点(测量) 计算机科学 卷积神经网络 蛋白质测序 生物信息学 图形 蛋白质结构预测 蛋白质结构 生物系统 计算生物学 人工智能 化学 肽序列 算法 基因 生物化学 生物 理论计算机科学 有机化学 大地测量学 地理
作者
Jing Wang,Sheng Chen,Qianmu Yuan,Jianwen Chen,Danping Li,Lei Wang,Yuedong Yang
出处
期刊:Journal of Computational Chemistry [Wiley]
卷期号:45 (8): 436-445 被引量:8
标识
DOI:10.1002/jcc.27249
摘要

Abstract Solubility is one of the most important properties of protein. Protein solubility can be greatly changed by single amino acid mutations and the reduced protein solubility could lead to diseases. Since experimental methods to determine solubility are time‐consuming and expensive, in‐silico methods have been developed to predict the protein solubility changes caused by mutations mostly through protein evolution information. However, these methods are slow since it takes long time to obtain evolution information through multiple sequence alignment. In addition, these methods are of low performance because they do not fully utilize protein 3D structures due to a lack of experimental structures for most proteins. Here, we proposed a sequence‐based method DeepMutSol to predict solubility change from residual mutations based on the Graph Convolutional Neural Network (GCN), where the protein graph was initiated according to predicted protein structure from Alphafold2, and the nodes (residues) were represented by protein language embeddings. To circumvent the small data of solubility changes, we further pretrained the model over absolute protein solubility. DeepMutSol was shown to outperform state‐of‐the‐art methods in benchmark tests. In addition, we applied the method to clinically relevant genes from the ClinVar database and the predicted solubility changes were shown able to separate pathogenic mutations. All of the data sets and the source code are available at https://github.com/biomed-AI/DeepMutSol .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
赘婿应助科研通管家采纳,获得20
刚刚
刚刚
Owen应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
既然寄了,那就开摆完成签到 ,获得积分10
刚刚
amy发布了新的文献求助10
刚刚
2秒前
zwt13104完成签到,获得积分10
2秒前
佳佳应助易酰水烊酸采纳,获得10
3秒前
黄黄发布了新的文献求助10
3秒前
笨笨钢笔完成签到 ,获得积分20
3秒前
香蕉觅云应助大大的西瓜采纳,获得10
3秒前
星星掉沟了完成签到,获得积分10
4秒前
Pengcheng发布了新的文献求助10
4秒前
4秒前
lllm完成签到,获得积分10
4秒前
小王加油啊啊啊完成签到,获得积分10
5秒前
Zz发布了新的文献求助10
6秒前
yyyfff应助丸子采纳,获得10
6秒前
LYL完成签到,获得积分10
6秒前
7秒前
吴小苏完成签到,获得积分10
7秒前
蓝景轩辕完成签到 ,获得积分10
7秒前
妮妮发布了新的文献求助10
9秒前
10秒前
英姑应助斯文明杰采纳,获得10
12秒前
内向的哈密瓜完成签到,获得积分10
12秒前
星辰大海应助cc采纳,获得10
13秒前
14秒前
Hello应助jacs111采纳,获得10
14秒前
14秒前
量子星尘发布了新的文献求助30
14秒前
15秒前
15秒前
15秒前
xu完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958968
求助须知:如何正确求助?哪些是违规求助? 3505216
关于积分的说明 11123184
捐赠科研通 3236828
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871455
科研通“疑难数据库(出版商)”最低求助积分说明 802794