A Self-supervised Transformer with Feature Fusion for SAR Image Semantic Segmentation in Marine Aquaculture Monitoring

计算机科学 分割 合成孔径雷达 人工智能 模式识别(心理学) 图像分割 解码方法 电信
作者
Jianchao Fan,Jianlin Zhou,X Wang,Jun Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15
标识
DOI:10.1109/tgrs.2023.3321595
摘要

The rapid development of the marine aquaculture industry has brought about a series of environmental problems that need to be monitored and planned. There is abundant marine aquaculture data obtained through synthetic aperture radar (SAR) remote sensing over a long period. With a large amount of unlabeled data, self-supervised learning can describe the feature representation of targets. However, when self-supervised learning meets big data, it often leads to semantic information loss, such as inter-class misjudgment and intra-class discontinuity. To address this issue, this paper proposes a self-supervised transformer with feature fusion (STFF) for the semantic segmentation of SAR images in marine aquaculture monitoring. STFF consists mainly of a self-attention encoding module with a hybrid loss function and a semantic segmentation decoding module with feature fusion. For encoding, the transformer is pretrained via self-supervised learning based on a hybrid loss function to enrich local, global and edge information for dealing with semantic information loss and data imbalance in whole-scene SAR images. For decoding, the features extracted from transformer blocks are fused to enhance semantic characteristics, improve the intra-class continuity of segmentation, and reduce the occurrence of inter-class misjudgment. The superiority of the proposed method to state-of-the-art algorithms is demonstrated via experimentation on GaoFen-3 and Radarsat-2 SAR datasets. The code has been available at https://github.com/fjc1575/Marine-Aquaculture/tree/main/STFF-code for the sake of reproducibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangdongjiao完成签到,获得积分10
1秒前
我住隔壁我姓王完成签到,获得积分10
1秒前
燕天与发布了新的文献求助10
1秒前
陈雨晴发布了新的文献求助10
2秒前
科研通AI2S应助元谷雪采纳,获得10
2秒前
小米完成签到,获得积分10
2秒前
sinon完成签到,获得积分10
2秒前
2秒前
夏定海完成签到,获得积分10
2秒前
giao发布了新的文献求助10
3秒前
乐观安蕾完成签到,获得积分10
4秒前
4秒前
990723完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
瀼瀼完成签到,获得积分10
4秒前
5秒前
啊楠完成签到,获得积分10
5秒前
郭勇慧发布了新的文献求助10
5秒前
6秒前
豆子完成签到 ,获得积分10
6秒前
玉子烧完成签到,获得积分10
6秒前
完美世界应助不败姑娘采纳,获得10
6秒前
6秒前
6秒前
111111发布了新的文献求助10
7秒前
清脆雪巧完成签到,获得积分10
7秒前
7秒前
zhaopenghui发布了新的文献求助10
7秒前
惰性气体发布了新的文献求助10
8秒前
8秒前
cy完成签到 ,获得积分20
8秒前
8秒前
9秒前
黑大帅发布了新的文献求助10
9秒前
小Z发布了新的文献求助10
9秒前
蓝天发布了新的文献求助10
9秒前
orixero应助2240920060采纳,获得10
9秒前
燕天与完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034