A Self-supervised Transformer with Feature Fusion for SAR Image Semantic Segmentation in Marine Aquaculture Monitoring

计算机科学 分割 合成孔径雷达 人工智能 模式识别(心理学) 图像分割 解码方法 电信
作者
Jianchao Fan,Jianlin Zhou,X Wang,Jun Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15
标识
DOI:10.1109/tgrs.2023.3321595
摘要

The rapid development of the marine aquaculture industry has brought about a series of environmental problems that need to be monitored and planned. There is abundant marine aquaculture data obtained through synthetic aperture radar (SAR) remote sensing over a long period. With a large amount of unlabeled data, self-supervised learning can describe the feature representation of targets. However, when self-supervised learning meets big data, it often leads to semantic information loss, such as inter-class misjudgment and intra-class discontinuity. To address this issue, this paper proposes a self-supervised transformer with feature fusion (STFF) for the semantic segmentation of SAR images in marine aquaculture monitoring. STFF consists mainly of a self-attention encoding module with a hybrid loss function and a semantic segmentation decoding module with feature fusion. For encoding, the transformer is pretrained via self-supervised learning based on a hybrid loss function to enrich local, global and edge information for dealing with semantic information loss and data imbalance in whole-scene SAR images. For decoding, the features extracted from transformer blocks are fused to enhance semantic characteristics, improve the intra-class continuity of segmentation, and reduce the occurrence of inter-class misjudgment. The superiority of the proposed method to state-of-the-art algorithms is demonstrated via experimentation on GaoFen-3 and Radarsat-2 SAR datasets. The code has been available at https://github.com/fjc1575/Marine-Aquaculture/tree/main/STFF-code for the sake of reproducibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
舒心的跳跳糖完成签到,获得积分10
1秒前
小黑完成签到 ,获得积分10
1秒前
2秒前
3秒前
充电宝应助四叶菜采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
zjm发布了新的文献求助10
3秒前
傲娇迎南完成签到,获得积分10
3秒前
不知道叫个啥完成签到 ,获得积分10
4秒前
majianfu完成签到,获得积分20
4秒前
4秒前
5秒前
5秒前
TT001发布了新的文献求助10
6秒前
8秒前
毛健发布了新的文献求助10
8秒前
BowieHuang应助谨慎的寒松采纳,获得10
8秒前
四叶菜完成签到,获得积分20
9秒前
finish完成签到 ,获得积分10
12秒前
烟花应助正在通话中采纳,获得10
12秒前
13秒前
doctorduanmu完成签到,获得积分10
13秒前
13秒前
14秒前
ttkx_8应助天份采纳,获得10
14秒前
万能图书馆应助qiu采纳,获得10
15秒前
15秒前
WJR完成签到,获得积分10
16秒前
16秒前
米亚完成签到 ,获得积分10
17秒前
冰糖雪梨完成签到,获得积分10
18秒前
上官若男应助毛健采纳,获得10
18秒前
WJR发布了新的文献求助10
19秒前
Mcintosh完成签到,获得积分10
19秒前
搬砖美少女完成签到,获得积分10
20秒前
sevenlalala完成签到,获得积分10
20秒前
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742729
求助须知:如何正确求助?哪些是违规求助? 5409935
关于积分的说明 15345601
捐赠科研通 4883834
什么是DOI,文献DOI怎么找? 2625399
邀请新用户注册赠送积分活动 1574188
关于科研通互助平台的介绍 1531146