A Self-supervised Transformer with Feature Fusion for SAR Image Semantic Segmentation in Marine Aquaculture Monitoring

计算机科学 分割 合成孔径雷达 人工智能 模式识别(心理学) 图像分割 解码方法 电信
作者
Jianchao Fan,Jianlin Zhou,X Wang,Jun Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15
标识
DOI:10.1109/tgrs.2023.3321595
摘要

The rapid development of the marine aquaculture industry has brought about a series of environmental problems that need to be monitored and planned. There is abundant marine aquaculture data obtained through synthetic aperture radar (SAR) remote sensing over a long period. With a large amount of unlabeled data, self-supervised learning can describe the feature representation of targets. However, when self-supervised learning meets big data, it often leads to semantic information loss, such as inter-class misjudgment and intra-class discontinuity. To address this issue, this paper proposes a self-supervised transformer with feature fusion (STFF) for the semantic segmentation of SAR images in marine aquaculture monitoring. STFF consists mainly of a self-attention encoding module with a hybrid loss function and a semantic segmentation decoding module with feature fusion. For encoding, the transformer is pretrained via self-supervised learning based on a hybrid loss function to enrich local, global and edge information for dealing with semantic information loss and data imbalance in whole-scene SAR images. For decoding, the features extracted from transformer blocks are fused to enhance semantic characteristics, improve the intra-class continuity of segmentation, and reduce the occurrence of inter-class misjudgment. The superiority of the proposed method to state-of-the-art algorithms is demonstrated via experimentation on GaoFen-3 and Radarsat-2 SAR datasets. The code has been available at https://github.com/fjc1575/Marine-Aquaculture/tree/main/STFF-code for the sake of reproducibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜行者完成签到,获得积分10
刚刚
大模型应助顾天与采纳,获得10
刚刚
刚刚
宝莉完成签到,获得积分10
刚刚
1秒前
1秒前
zx发布了新的文献求助10
1秒前
Messi发布了新的文献求助10
2秒前
脑洞疼应助甜蜜惊蛰采纳,获得10
2秒前
3秒前
悦耳乐萱发布了新的文献求助10
3秒前
4秒前
英姑应助高兴的风华采纳,获得10
4秒前
4秒前
月下魔术师完成签到,获得积分10
5秒前
研友_VZG7GZ应助黑yan采纳,获得10
5秒前
竹筏过海应助任性的鸵鸟采纳,获得30
5秒前
典雅的捕发布了新的文献求助10
6秒前
6秒前
senquana完成签到,获得积分10
6秒前
宝莉发布了新的文献求助10
6秒前
王誓言发布了新的文献求助10
6秒前
7秒前
研友_R2D2发布了新的文献求助10
7秒前
zx完成签到,获得积分10
7秒前
Criminology34发布了新的文献求助300
8秒前
9秒前
1177发布了新的文献求助30
9秒前
风雅颂完成签到,获得积分10
9秒前
棋士应助给你吃一个屁采纳,获得10
10秒前
儒雅的奇异果完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
12秒前
Henvy完成签到,获得积分10
12秒前
12秒前
QingyuShang完成签到,获得积分10
12秒前
Redback应助lq采纳,获得20
13秒前
李健应助典雅的捕采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684108
求助须知:如何正确求助?哪些是违规求助? 5035205
关于积分的说明 15183583
捐赠科研通 4843435
什么是DOI,文献DOI怎么找? 2596688
邀请新用户注册赠送积分活动 1549396
关于科研通互助平台的介绍 1507893