A Self-supervised Transformer with Feature Fusion for SAR Image Semantic Segmentation in Marine Aquaculture Monitoring

计算机科学 分割 合成孔径雷达 人工智能 模式识别(心理学) 图像分割 解码方法 电信
作者
Jianchao Fan,Jianlin Zhou,X Wang,Jun Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15
标识
DOI:10.1109/tgrs.2023.3321595
摘要

The rapid development of the marine aquaculture industry has brought about a series of environmental problems that need to be monitored and planned. There is abundant marine aquaculture data obtained through synthetic aperture radar (SAR) remote sensing over a long period. With a large amount of unlabeled data, self-supervised learning can describe the feature representation of targets. However, when self-supervised learning meets big data, it often leads to semantic information loss, such as inter-class misjudgment and intra-class discontinuity. To address this issue, this paper proposes a self-supervised transformer with feature fusion (STFF) for the semantic segmentation of SAR images in marine aquaculture monitoring. STFF consists mainly of a self-attention encoding module with a hybrid loss function and a semantic segmentation decoding module with feature fusion. For encoding, the transformer is pretrained via self-supervised learning based on a hybrid loss function to enrich local, global and edge information for dealing with semantic information loss and data imbalance in whole-scene SAR images. For decoding, the features extracted from transformer blocks are fused to enhance semantic characteristics, improve the intra-class continuity of segmentation, and reduce the occurrence of inter-class misjudgment. The superiority of the proposed method to state-of-the-art algorithms is demonstrated via experimentation on GaoFen-3 and Radarsat-2 SAR datasets. The code has been available at https://github.com/fjc1575/Marine-Aquaculture/tree/main/STFF-code for the sake of reproducibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈的向日葵完成签到,获得积分10
1秒前
完美世界应助哩哩采纳,获得10
1秒前
小二郎应助拉姆采纳,获得10
1秒前
善学以致用应助郝誉采纳,获得10
2秒前
3秒前
颖火虫发布了新的文献求助10
4秒前
科研通AI5应助贺烨霖采纳,获得30
4秒前
4秒前
4秒前
5秒前
6秒前
6秒前
zoie0809完成签到,获得积分10
6秒前
7秒前
yujiayou完成签到,获得积分10
8秒前
8秒前
可爱的函函应助bubu采纳,获得10
9秒前
Ava应助YJ采纳,获得10
9秒前
隐形曼青应助细腻翠霜采纳,获得10
10秒前
lx完成签到 ,获得积分10
10秒前
呃呃呃发布了新的文献求助10
11秒前
13秒前
Peng发布了新的文献求助10
13秒前
赘婿应助liuliu采纳,获得30
13秒前
13秒前
ghhhn完成签到,获得积分10
13秒前
undertaker发布了新的文献求助10
14秒前
WYB完成签到 ,获得积分10
15秒前
underunder完成签到,获得积分10
15秒前
赘婿应助叫我学弟采纳,获得10
16秒前
17秒前
17秒前
liwanyi0808发布了新的文献求助10
17秒前
可爱的函函应助Peng采纳,获得10
18秒前
18秒前
楚楚爸完成签到,获得积分10
19秒前
19秒前
思源应助hll采纳,获得10
21秒前
万能图书馆应助wang采纳,获得10
21秒前
科研通AI6应助小白菜采纳,获得30
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1500
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123702
求助须知:如何正确求助?哪些是违规求助? 4328047
关于积分的说明 13486161
捐赠科研通 4162399
什么是DOI,文献DOI怎么找? 2281388
邀请新用户注册赠送积分活动 1282830
关于科研通互助平台的介绍 1221927