A Self-supervised Transformer with Feature Fusion for SAR Image Semantic Segmentation in Marine Aquaculture Monitoring

计算机科学 分割 合成孔径雷达 人工智能 模式识别(心理学) 图像分割 解码方法 电信
作者
Jianchao Fan,Jianlin Zhou,X Wang,Jun Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15
标识
DOI:10.1109/tgrs.2023.3321595
摘要

The rapid development of the marine aquaculture industry has brought about a series of environmental problems that need to be monitored and planned. There is abundant marine aquaculture data obtained through synthetic aperture radar (SAR) remote sensing over a long period. With a large amount of unlabeled data, self-supervised learning can describe the feature representation of targets. However, when self-supervised learning meets big data, it often leads to semantic information loss, such as inter-class misjudgment and intra-class discontinuity. To address this issue, this paper proposes a self-supervised transformer with feature fusion (STFF) for the semantic segmentation of SAR images in marine aquaculture monitoring. STFF consists mainly of a self-attention encoding module with a hybrid loss function and a semantic segmentation decoding module with feature fusion. For encoding, the transformer is pretrained via self-supervised learning based on a hybrid loss function to enrich local, global and edge information for dealing with semantic information loss and data imbalance in whole-scene SAR images. For decoding, the features extracted from transformer blocks are fused to enhance semantic characteristics, improve the intra-class continuity of segmentation, and reduce the occurrence of inter-class misjudgment. The superiority of the proposed method to state-of-the-art algorithms is demonstrated via experimentation on GaoFen-3 and Radarsat-2 SAR datasets. The code has been available at https://github.com/fjc1575/Marine-Aquaculture/tree/main/STFF-code for the sake of reproducibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助HBY采纳,获得10
刚刚
llf完成签到 ,获得积分10
1秒前
LX完成签到,获得积分10
1秒前
科研通AI6.1应助online1881采纳,获得10
1秒前
一坨台台完成签到,获得积分10
2秒前
2秒前
大力元霜完成签到,获得积分10
2秒前
3秒前
牛牛超人发布了新的文献求助20
4秒前
7秒前
boyis完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
YR完成签到 ,获得积分10
10秒前
10秒前
10秒前
落寞剑成完成签到 ,获得积分10
11秒前
慕青应助WYN采纳,获得10
12秒前
12秒前
12秒前
温柔柜子发布了新的文献求助10
12秒前
14秒前
14秒前
Mito2009完成签到,获得积分10
14秒前
littleby发布了新的文献求助10
14秒前
sling116完成签到,获得积分10
16秒前
哈哈发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
阚曦完成签到,获得积分10
17秒前
Mito2009发布了新的文献求助10
17秒前
18秒前
追梦人完成签到,获得积分10
18秒前
顾矜应助sinlar采纳,获得10
20秒前
21秒前
ylkylk发布了新的文献求助10
21秒前
22秒前
23秒前
23秒前
online1881发布了新的文献求助10
23秒前
希望天下0贩的0应助liu采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785393
求助须知:如何正确求助?哪些是违规求助? 5687580
关于积分的说明 15467396
捐赠科研通 4914484
什么是DOI,文献DOI怎么找? 2645216
邀请新用户注册赠送积分活动 1593054
关于科研通互助平台的介绍 1547382