A Self-supervised Transformer with Feature Fusion for SAR Image Semantic Segmentation in Marine Aquaculture Monitoring

计算机科学 分割 合成孔径雷达 人工智能 模式识别(心理学) 图像分割 解码方法 电信
作者
Jianchao Fan,Jianlin Zhou,X Wang,Jun Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15
标识
DOI:10.1109/tgrs.2023.3321595
摘要

The rapid development of the marine aquaculture industry has brought about a series of environmental problems that need to be monitored and planned. There is abundant marine aquaculture data obtained through synthetic aperture radar (SAR) remote sensing over a long period. With a large amount of unlabeled data, self-supervised learning can describe the feature representation of targets. However, when self-supervised learning meets big data, it often leads to semantic information loss, such as inter-class misjudgment and intra-class discontinuity. To address this issue, this paper proposes a self-supervised transformer with feature fusion (STFF) for the semantic segmentation of SAR images in marine aquaculture monitoring. STFF consists mainly of a self-attention encoding module with a hybrid loss function and a semantic segmentation decoding module with feature fusion. For encoding, the transformer is pretrained via self-supervised learning based on a hybrid loss function to enrich local, global and edge information for dealing with semantic information loss and data imbalance in whole-scene SAR images. For decoding, the features extracted from transformer blocks are fused to enhance semantic characteristics, improve the intra-class continuity of segmentation, and reduce the occurrence of inter-class misjudgment. The superiority of the proposed method to state-of-the-art algorithms is demonstrated via experimentation on GaoFen-3 and Radarsat-2 SAR datasets. The code has been available at https://github.com/fjc1575/Marine-Aquaculture/tree/main/STFF-code for the sake of reproducibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
哈哈嘻完成签到 ,获得积分10
3秒前
4秒前
鸠摩智完成签到,获得积分10
4秒前
5秒前
木木完成签到,获得积分10
6秒前
摆哥发布了新的文献求助10
9秒前
sunlight应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
12秒前
12秒前
13秒前
简单生活完成签到 ,获得积分10
14秒前
KKKZ发布了新的文献求助10
15秒前
风雨霖霖完成签到 ,获得积分10
16秒前
mark2021完成签到,获得积分10
17秒前
爱你完成签到,获得积分10
18秒前
18秒前
日照金峰完成签到,获得积分10
19秒前
为霜完成签到 ,获得积分10
19秒前
yyd完成签到,获得积分10
23秒前
默默的成危完成签到,获得积分10
24秒前
离笼完成签到,获得积分10
24秒前
颜宇翔完成签到,获得积分10
24秒前
A晨完成签到 ,获得积分10
25秒前
阳光灿烂完成签到,获得积分10
31秒前
liushiyi发布了新的文献求助10
31秒前
Nariy完成签到,获得积分10
32秒前
xzxzxz完成签到,获得积分10
33秒前
34秒前
lizhoukan1完成签到,获得积分10
34秒前
KKKZ完成签到,获得积分10
36秒前
bear完成签到,获得积分10
36秒前
高兴的半仙完成签到,获得积分10
38秒前
litn完成签到 ,获得积分10
39秒前
余长青完成签到 ,获得积分10
39秒前
缥缈白翠完成签到,获得积分20
40秒前
明明完成签到 ,获得积分10
41秒前
Dawn完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565256
求助须知:如何正确求助?哪些是违规求助? 4650146
关于积分的说明 14689953
捐赠科研通 4591998
什么是DOI,文献DOI怎么找? 2519428
邀请新用户注册赠送积分活动 1491940
关于科研通互助平台的介绍 1463159