A Self-supervised Transformer with Feature Fusion for SAR Image Semantic Segmentation in Marine Aquaculture Monitoring

计算机科学 分割 合成孔径雷达 人工智能 模式识别(心理学) 图像分割 解码方法 电信
作者
Jianchao Fan,Jianlin Zhou,X Wang,Jun Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15
标识
DOI:10.1109/tgrs.2023.3321595
摘要

The rapid development of the marine aquaculture industry has brought about a series of environmental problems that need to be monitored and planned. There is abundant marine aquaculture data obtained through synthetic aperture radar (SAR) remote sensing over a long period. With a large amount of unlabeled data, self-supervised learning can describe the feature representation of targets. However, when self-supervised learning meets big data, it often leads to semantic information loss, such as inter-class misjudgment and intra-class discontinuity. To address this issue, this paper proposes a self-supervised transformer with feature fusion (STFF) for the semantic segmentation of SAR images in marine aquaculture monitoring. STFF consists mainly of a self-attention encoding module with a hybrid loss function and a semantic segmentation decoding module with feature fusion. For encoding, the transformer is pretrained via self-supervised learning based on a hybrid loss function to enrich local, global and edge information for dealing with semantic information loss and data imbalance in whole-scene SAR images. For decoding, the features extracted from transformer blocks are fused to enhance semantic characteristics, improve the intra-class continuity of segmentation, and reduce the occurrence of inter-class misjudgment. The superiority of the proposed method to state-of-the-art algorithms is demonstrated via experimentation on GaoFen-3 and Radarsat-2 SAR datasets. The code has been available at https://github.com/fjc1575/Marine-Aquaculture/tree/main/STFF-code for the sake of reproducibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wk应助Liu采纳,获得10
刚刚
科目三应助jessicazhong采纳,获得10
1秒前
stargazer发布了新的文献求助10
1秒前
1秒前
hswhswqkdh完成签到,获得积分10
1秒前
所所应助Dongsy采纳,获得10
2秒前
友好驳完成签到,获得积分10
2秒前
3秒前
知了完成签到,获得积分10
3秒前
Ettrickfield发布了新的文献求助10
4秒前
yuanyu发布了新的文献求助10
4秒前
4秒前
meng若发布了新的文献求助10
5秒前
小周发布了新的文献求助10
5秒前
科目三应助大圣采纳,获得10
6秒前
桐桐应助清蒸鱼采纳,获得10
6秒前
完美凝海完成签到,获得积分10
7秒前
8秒前
8秒前
休斯顿完成签到,获得积分10
8秒前
LZQ完成签到,获得积分10
10秒前
10秒前
共享精神应助XieQinxie采纳,获得10
11秒前
jzj完成签到 ,获得积分10
11秒前
三气诸葛亮完成签到,获得积分10
11秒前
11秒前
tesla发布了新的文献求助10
11秒前
12秒前
12秒前
科研通AI5应助完美的雨泽采纳,获得10
13秒前
FashionBoy应助完美的雨泽采纳,获得10
13秒前
森林发布了新的文献求助10
13秒前
13秒前
stargazer完成签到,获得积分10
13秒前
Qw完成签到 ,获得积分10
15秒前
16秒前
LYF发布了新的文献求助10
16秒前
18秒前
18秒前
大圣发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547101
求助须知:如何正确求助?哪些是违规求助? 3978164
关于积分的说明 12318204
捐赠科研通 3646677
什么是DOI,文献DOI怎么找? 2008295
邀请新用户注册赠送积分活动 1043874
科研通“疑难数据库(出版商)”最低求助积分说明 932515