A Self-supervised Transformer with Feature Fusion for SAR Image Semantic Segmentation in Marine Aquaculture Monitoring

计算机科学 分割 合成孔径雷达 人工智能 模式识别(心理学) 图像分割 解码方法 电信
作者
Jianchao Fan,Jianlin Zhou,X Wang,Jun Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15
标识
DOI:10.1109/tgrs.2023.3321595
摘要

The rapid development of the marine aquaculture industry has brought about a series of environmental problems that need to be monitored and planned. There is abundant marine aquaculture data obtained through synthetic aperture radar (SAR) remote sensing over a long period. With a large amount of unlabeled data, self-supervised learning can describe the feature representation of targets. However, when self-supervised learning meets big data, it often leads to semantic information loss, such as inter-class misjudgment and intra-class discontinuity. To address this issue, this paper proposes a self-supervised transformer with feature fusion (STFF) for the semantic segmentation of SAR images in marine aquaculture monitoring. STFF consists mainly of a self-attention encoding module with a hybrid loss function and a semantic segmentation decoding module with feature fusion. For encoding, the transformer is pretrained via self-supervised learning based on a hybrid loss function to enrich local, global and edge information for dealing with semantic information loss and data imbalance in whole-scene SAR images. For decoding, the features extracted from transformer blocks are fused to enhance semantic characteristics, improve the intra-class continuity of segmentation, and reduce the occurrence of inter-class misjudgment. The superiority of the proposed method to state-of-the-art algorithms is demonstrated via experimentation on GaoFen-3 and Radarsat-2 SAR datasets. The code has been available at https://github.com/fjc1575/Marine-Aquaculture/tree/main/STFF-code for the sake of reproducibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
曹琳发布了新的文献求助10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
久念发布了新的文献求助10
2秒前
悦耳难摧发布了新的文献求助10
2秒前
可爱的函函应助Arthur采纳,获得10
2秒前
JamesPei应助vivi猫小咪采纳,获得10
3秒前
共享精神应助独特的高山采纳,获得10
3秒前
maxine完成签到,获得积分10
3秒前
zhegewa完成签到,获得积分10
3秒前
3秒前
SciGPT应助三三采纳,获得10
4秒前
Jasper应助狄鹤轩采纳,获得10
4秒前
廖思巧完成签到,获得积分20
4秒前
5秒前
5秒前
jie酱拌面应助南宫白竹采纳,获得10
5秒前
昼夜本色发布了新的文献求助10
6秒前
zhegewa发布了新的文献求助10
6秒前
独特的鱼完成签到,获得积分10
6秒前
6秒前
完美世界应助飘逸的又夏采纳,获得10
7秒前
清墨发布了新的文献求助30
8秒前
Halo发布了新的文献求助10
8秒前
8秒前
zz发布了新的文献求助10
8秒前
9秒前
9秒前
丘比特应助木每采纳,获得10
9秒前
小鲁完成签到,获得积分20
9秒前
9秒前
脑洞疼应助hh采纳,获得10
10秒前
呜哈哈发布了新的文献求助10
11秒前
nns发布了新的文献求助10
11秒前
11秒前
ANTI完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
Ripper完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728188
求助须知:如何正确求助?哪些是违规求助? 5311904
关于积分的说明 15313531
捐赠科研通 4875514
什么是DOI,文献DOI怎么找? 2618817
邀请新用户注册赠送积分活动 1568419
关于科研通互助平台的介绍 1525058