A Self-supervised Transformer with Feature Fusion for SAR Image Semantic Segmentation in Marine Aquaculture Monitoring

计算机科学 分割 合成孔径雷达 人工智能 模式识别(心理学) 图像分割 解码方法 电信
作者
Jianchao Fan,Jianlin Zhou,X Wang,Jun Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15
标识
DOI:10.1109/tgrs.2023.3321595
摘要

The rapid development of the marine aquaculture industry has brought about a series of environmental problems that need to be monitored and planned. There is abundant marine aquaculture data obtained through synthetic aperture radar (SAR) remote sensing over a long period. With a large amount of unlabeled data, self-supervised learning can describe the feature representation of targets. However, when self-supervised learning meets big data, it often leads to semantic information loss, such as inter-class misjudgment and intra-class discontinuity. To address this issue, this paper proposes a self-supervised transformer with feature fusion (STFF) for the semantic segmentation of SAR images in marine aquaculture monitoring. STFF consists mainly of a self-attention encoding module with a hybrid loss function and a semantic segmentation decoding module with feature fusion. For encoding, the transformer is pretrained via self-supervised learning based on a hybrid loss function to enrich local, global and edge information for dealing with semantic information loss and data imbalance in whole-scene SAR images. For decoding, the features extracted from transformer blocks are fused to enhance semantic characteristics, improve the intra-class continuity of segmentation, and reduce the occurrence of inter-class misjudgment. The superiority of the proposed method to state-of-the-art algorithms is demonstrated via experimentation on GaoFen-3 and Radarsat-2 SAR datasets. The code has been available at https://github.com/fjc1575/Marine-Aquaculture/tree/main/STFF-code for the sake of reproducibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yaoyao发布了新的文献求助10
1秒前
1秒前
yijibaoli完成签到 ,获得积分10
2秒前
2秒前
及禾发布了新的文献求助10
2秒前
研友_n2Qv2L发布了新的文献求助10
2秒前
3秒前
7788完成签到,获得积分10
4秒前
FyD关闭了FyD文献求助
5秒前
5秒前
wch发布了新的文献求助10
5秒前
6秒前
瞿绝悟发布了新的文献求助10
6秒前
沉静飞雪完成签到,获得积分10
6秒前
6秒前
聂珩发布了新的文献求助10
6秒前
6秒前
寒冷的书白完成签到,获得积分20
7秒前
橙子发布了新的文献求助10
8秒前
Lucas应助李里哩采纳,获得10
8秒前
腼腆的初蓝完成签到,获得积分10
9秒前
10秒前
wz关注了科研通微信公众号
10秒前
狐妖完成签到,获得积分10
11秒前
wwwwww发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
辛勤秋双发布了新的文献求助20
12秒前
科目三应助亮仔采纳,获得10
12秒前
眯眯眼的小懒虫完成签到,获得积分10
13秒前
13秒前
董钰婷完成签到,获得积分10
13秒前
尊敬的惠发布了新的文献求助80
13秒前
13秒前
萝卜干完成签到,获得积分10
13秒前
13秒前
瑶瑶发布了新的文献求助20
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082