SURVS: A Swin-Unet and game theory-based unsupervised segmentation method for retinal vessel

计算机科学 分割 人工智能 模式识别(心理学) 无监督学习 图像分割 计算机视觉
作者
Tianxiang Wang,Qun Dai
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107542-107542 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.107542
摘要

Medical images, especially intricate vascular structures, are costly and time-consuming to annotate manually. It is beneficial to investigate an unsupervised method for vessel segmentation, one that circumvents the manual annotation yet remains valuable for disease detection. In this study, we design an unsupervised retinal vessel segmentation model based on the Swin-Unet framework and game theory. First, we construct two extreme pseudo-mapping functions by changing the contrast of the images and obtain their corresponding pseudo-masks based the on binary segmentation method and mathematical morphology, then we prove that there exists a mapping function between pseudo-mappings such that its corresponding mask is closest to the ground true mask. To acquire the best-predicted mask, based on which, we second develop a model based on the Swin-Unet frame to solve the optimal mapping function, and introduce an Image Colorization proxy task to assist the learning of pixel-level feature representations. Third, since to the instability of two pseudo-masks, the predicted mask will inevitably have errors, inspired by the two-player, non-zero-sum, non-cooperative Neighbor's Collision game in game theory, a game filter is proposed in this paper to reduce the errors in the final predicted mask. Finally, we verify the effectiveness of the presented unsupervised retinal vessel segmentation model on DRIVE, STARE and CHASE_DB1 datasets, and extensive experiments show that has obvious advantages over image segmentation and conventional unsupervised models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助biyingxuan采纳,获得10
刚刚
壮观的灵凡完成签到 ,获得积分10
刚刚
情怀应助问题多多采纳,获得30
刚刚
谨慎纸飞机完成签到,获得积分10
刚刚
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
hangfu完成签到 ,获得积分10
1秒前
小汁儿完成签到,获得积分20
1秒前
酥脆小鱼发布了新的文献求助10
1秒前
李志明发布了新的文献求助10
1秒前
卡其嘛亮完成签到,获得积分10
1秒前
wzx发布了新的文献求助10
1秒前
科研通AI6应助皓月繁星采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
3秒前
ytzhang0587应助科研通管家采纳,获得20
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
3秒前
玄风应助科研通管家采纳,获得10
3秒前
3秒前
JamesPei应助睡觉大王采纳,获得10
3秒前
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得30
3秒前
英姑应助蛋蛋采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
乐空思应助科研通管家采纳,获得10
3秒前
乐空思应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
乐空思应助科研通管家采纳,获得50
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624710
求助须知:如何正确求助?哪些是违规求助? 4710500
关于积分的说明 14951127
捐赠科研通 4778615
什么是DOI,文献DOI怎么找? 2553367
邀请新用户注册赠送积分活动 1515328
关于科研通互助平台的介绍 1475603