亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LDS-FL: Loss Differential Strategy Based Federated Learning for Privacy Preserving

计算机科学 差别隐私 利用 联合学习 MNIST数据库 信息泄露 推论 机器学习 趋同(经济学) 隐私保护 私人信息检索 人工智能 钥匙(锁) 信息敏感性 信息隐私 数据挖掘 计算机安全 深度学习 经济 经济增长
作者
Taiyu Wang,Qinglin Yang,Kaiming Zhu,Junbo Wang,Chunhua Su,Kento Sato
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 1015-1030 被引量:9
标识
DOI:10.1109/tifs.2023.3322328
摘要

Federated Learning (FL) has attracted extraordinary attention from the industry and academia due to its advantages in privacy protection and collaboratively training on isolated datasets. Since machine learning algorithms usually try to find an optimal hypothesis to fit the training data, attackers also can exploit the shared models and reversely analyze users’ private information. However, there is still no good solution to solve the privacy-accuracy trade-off, by making information leakage more difficult and meanwhile can guarantee the convergence of learning. In this work, we propose a Loss Differential Strategy (LDS) for parameter replacement in FL. The key idea of our strategy is to maintain the performance of the Private Model to be preserved through parameter replacement with multi-user participation, while the efficiency of privacy attacks on the model can be significantly reduced. To evaluate the proposed method, we have conducted comprehensive experiments on four typical machine learning datasets to defend against membership inference attack. For example, the accuracy on MNIST is near 99%, while it can reduce the accuracy of attack by 10.1% compared with FedAvg. Compared with other traditional privacy protection mechanisms, our method also outperforms them in terms of accuracy and privacy preserving.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gexzygg应助科研通管家采纳,获得10
刚刚
5秒前
8秒前
浮游应助清秋若月采纳,获得10
11秒前
研友_VZG7GZ应助AliEmbark采纳,获得10
14秒前
kale123应助Li采纳,获得10
20秒前
36秒前
41秒前
852应助AliEmbark采纳,获得30
48秒前
1分钟前
1分钟前
1分钟前
AliEmbark发布了新的文献求助10
1分钟前
1分钟前
2分钟前
JrPaleo101完成签到,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
kale123应助Li采纳,获得10
2分钟前
gtgyh完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
精明的靖雁完成签到,获得积分10
3分钟前
3分钟前
FXe完成签到,获得积分10
3分钟前
Li发布了新的文献求助10
3分钟前
AliEmbark发布了新的文献求助100
3分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
爆米花应助科研通管家采纳,获得10
4分钟前
11完成签到,获得积分10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
11发布了新的文献求助10
4分钟前
AliEmbark发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549282
求助须知:如何正确求助?哪些是违规求助? 4634593
关于积分的说明 14634894
捐赠科研通 4576053
什么是DOI,文献DOI怎么找? 2509476
邀请新用户注册赠送积分活动 1485332
关于科研通互助平台的介绍 1456515