LDS-FL: Loss Differential Strategy Based Federated Learning for Privacy Preserving

计算机科学 差别隐私 利用 联合学习 MNIST数据库 信息泄露 推论 机器学习 趋同(经济学) 隐私保护 私人信息检索 人工智能 钥匙(锁) 信息敏感性 信息隐私 数据挖掘 计算机安全 深度学习 经济 经济增长
作者
Taiyu Wang,Qinglin Yang,Kaiming Zhu,Junbo Wang,Chunhua Su,Kento Sato
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 1015-1030 被引量:9
标识
DOI:10.1109/tifs.2023.3322328
摘要

Federated Learning (FL) has attracted extraordinary attention from the industry and academia due to its advantages in privacy protection and collaboratively training on isolated datasets. Since machine learning algorithms usually try to find an optimal hypothesis to fit the training data, attackers also can exploit the shared models and reversely analyze users’ private information. However, there is still no good solution to solve the privacy-accuracy trade-off, by making information leakage more difficult and meanwhile can guarantee the convergence of learning. In this work, we propose a Loss Differential Strategy (LDS) for parameter replacement in FL. The key idea of our strategy is to maintain the performance of the Private Model to be preserved through parameter replacement with multi-user participation, while the efficiency of privacy attacks on the model can be significantly reduced. To evaluate the proposed method, we have conducted comprehensive experiments on four typical machine learning datasets to defend against membership inference attack. For example, the accuracy on MNIST is near 99%, while it can reduce the accuracy of attack by 10.1% compared with FedAvg. Compared with other traditional privacy protection mechanisms, our method also outperforms them in terms of accuracy and privacy preserving.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lin发布了新的文献求助10
刚刚
刚刚
蕾蕾发布了新的文献求助10
1秒前
YMY发布了新的文献求助10
1秒前
情怀应助科研菜鸟采纳,获得10
1秒前
1秒前
SuperYing发布了新的文献求助10
2秒前
烟花应助风中元瑶采纳,获得10
2秒前
2秒前
Hello应助李联洪采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
zz发布了新的文献求助10
3秒前
昏睡的蟠桃应助豆豆采纳,获得30
3秒前
哈哈哈哈哈完成签到,获得积分10
3秒前
3秒前
4秒前
852应助wsd采纳,获得10
5秒前
念心发布了新的文献求助10
5秒前
优雅盼海发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
Kkkkkk发布了新的文献求助10
8秒前
zishan发布了新的文献求助20
9秒前
lllyf发布了新的文献求助10
9秒前
侧耳倾听发布了新的文献求助10
9秒前
寒冷的寒梦完成签到,获得积分10
9秒前
蕾蕾完成签到,获得积分10
9秒前
zzmyyds发布了新的文献求助10
10秒前
10秒前
10秒前
asqw完成签到,获得积分10
11秒前
YMH发布了新的文献求助10
12秒前
zzer发布了新的文献求助10
12秒前
tang123完成签到,获得积分10
12秒前
3d54s2完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531988
求助须知:如何正确求助?哪些是违规求助? 4620728
关于积分的说明 14574699
捐赠科研通 4560496
什么是DOI,文献DOI怎么找? 2498874
邀请新用户注册赠送积分活动 1478787
关于科研通互助平台的介绍 1450096