LDS-FL: Loss Differential Strategy Based Federated Learning for Privacy Preserving

计算机科学 差别隐私 利用 联合学习 MNIST数据库 信息泄露 推论 机器学习 趋同(经济学) 隐私保护 私人信息检索 人工智能 钥匙(锁) 信息敏感性 信息隐私 数据挖掘 计算机安全 深度学习 经济 经济增长
作者
Taiyu Wang,Qinglin Yang,Kaiming Zhu,Junbo Wang,Chunhua Su,Kento Sato
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 1015-1030
标识
DOI:10.1109/tifs.2023.3322328
摘要

Federated Learning (FL) has attracted extraordinary attention from the industry and academia due to its advantages in privacy protection and collaboratively training on isolated datasets. Since machine learning algorithms usually try to find an optimal hypothesis to fit the training data, attackers also can exploit the shared models and reversely analyze users’ private information. However, there is still no good solution to solve the privacy-accuracy trade-off, by making information leakage more difficult and meanwhile can guarantee the convergence of learning. In this work, we propose a Loss Differential Strategy (LDS) for parameter replacement in FL. The key idea of our strategy is to maintain the performance of the Private Model to be preserved through parameter replacement with multi-user participation, while the efficiency of privacy attacks on the model can be significantly reduced. To evaluate the proposed method, we have conducted comprehensive experiments on four typical machine learning datasets to defend against membership inference attack. For example, the accuracy on MNIST is near 99%, while it can reduce the accuracy of attack by 10.1% compared with FedAvg. Compared with other traditional privacy protection mechanisms, our method also outperforms them in terms of accuracy and privacy preserving.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
科研通AI2S应助清新的问枫采纳,获得10
3秒前
kk给稻草人的求助进行了留言
4秒前
CodeCraft应助Wand采纳,获得10
6秒前
6秒前
Akim应助z620采纳,获得30
7秒前
雨曦发布了新的文献求助10
8秒前
9秒前
spirit完成签到,获得积分10
9秒前
低调爱学习完成签到,获得积分10
9秒前
sankumao发布了新的文献求助10
10秒前
11秒前
12秒前
evny发布了新的文献求助10
12秒前
13秒前
14秒前
雨曦完成签到,获得积分10
14秒前
淼吉发布了新的文献求助20
15秒前
Zzhangoo发布了新的文献求助10
15秒前
wangxiu发布了新的文献求助50
15秒前
16秒前
天天快乐应助小脆皮采纳,获得10
16秒前
科研通AI5应助sankumao采纳,获得10
18秒前
迷l发布了新的文献求助10
18秒前
陈卓轩发布了新的文献求助10
18秒前
19秒前
20秒前
21秒前
今后应助boytoa采纳,获得10
21秒前
22秒前
22秒前
大模型应助勤奋的丸子采纳,获得10
22秒前
共享精神应助魔幻安筠采纳,获得10
22秒前
科研通AI2S应助wangxiu采纳,获得10
23秒前
SciGPT应助Zzhangoo采纳,获得10
24秒前
LIKUN发布了新的文献求助10
25秒前
FORK发布了新的文献求助10
26秒前
27秒前
sky发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999793
求助须知:如何正确求助?哪些是违规求助? 3539210
关于积分的说明 11276221
捐赠科研通 3277890
什么是DOI,文献DOI怎么找? 1807763
邀请新用户注册赠送积分活动 884231
科研通“疑难数据库(出版商)”最低求助积分说明 810142