Revealing Academic Evolution and Frontier Pattern in the Field of Uveitis Using Bibliometric Analysis, Natural Language Processing, and Machine Learning

潜在Dirichlet分配 人工智能 边疆 医学 图书馆学 数据科学 主题模型 计算机科学 地理 考古
作者
Ao Lu,Keyan Li,Guannan Su,Peizeng Yang
出处
期刊:Ocular Immunology and Inflammation [Informa]
卷期号:: 1-16 被引量:1
标识
DOI:10.1080/09273948.2023.2262028
摘要

ABSTRACTPurpose Numerous uveitis articles were published in this century, underneath which hides valuable intelligence. We aimed to characterize the evolution and patterns in this field.Methods We divided the 15,994 uveitis papers into four consecutive time periods for bibliometric analysis, and applied latent Dirichlet allocation topic modeling and machine learning techniques to the latest period. Results The yearly publication pattern fitted the curve: 1.21335x2 − 4,848.95282x + 4,844,935.58876 (R2 = 0.98311). The USA, the most productive country/region, focused on topics like ankylosing spondylitis and biologic therapy, whereas China (mainland) focused on topics like OCT and Behcet disease. The logistic regression showed the highest accuracy (71.6%) in the test set.Conclusion In this century, a growing number of countries/regions/authors/journals are involved in the uveitis study, promoting the scientific output and thematic evolution. Our pioneering study uncovers the evolving academic trends and frontier patterns in this field using bibliometric analysis and AI algorithms.KEYWORDS: Artificial intelligenceuveitismachine learningnatural language processing Disclosure statementNo potential conflict of interest was reported by the author(s).Supplementary materialSupplemental data for this article can be accessed online at https://doi.org/10.1080/09273948.2023.2262028Additional informationFundingThis study was supported by the National Natural Science Foundation Key Program [82230032], National Natural Science Foundation Key Program [81930023], KeyProject of Chongqing Science and Technology Bureau [CSTC2021jscx-gksb-N0010], Chongqing Outstanding Scientists Project (2019), Chongqing Chief Medical Scientist Project (2018), ChongqingKey Laboratory of Ophthalmology [CSTC, 2008CA5003] and ChongqingScience & Technology Platform and Base Construction Program [cstc2014pt-sy10002].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
liuyan发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
yufei发布了新的文献求助10
2秒前
lilac完成签到,获得积分10
2秒前
VLH发布了新的文献求助10
2秒前
3秒前
Accepted应助owoow采纳,获得10
3秒前
Accepted应助owoow采纳,获得10
3秒前
4秒前
unflycn完成签到,获得积分10
4秒前
4秒前
圆圆酱完成签到,获得积分10
5秒前
5秒前
6秒前
李健的小迷弟应助布丁采纳,获得10
6秒前
shmily发布了新的文献求助10
6秒前
unflycn发布了新的文献求助10
7秒前
9秒前
10秒前
Sunshine发布了新的文献求助10
10秒前
xzy998发布了新的文献求助10
10秒前
在水一方应助ai化学采纳,获得10
11秒前
陶治发布了新的文献求助10
12秒前
就是电话发布了新的文献求助30
12秒前
Sahra发布了新的文献求助10
13秒前
14秒前
14秒前
梨花雨凉完成签到,获得积分10
17秒前
等都到发布了新的文献求助10
17秒前
JamesPei应助zty采纳,获得10
17秒前
小柚子完成签到,获得积分10
17秒前
西贝发布了新的文献求助10
18秒前
18秒前
子车茗应助就是电话采纳,获得10
20秒前
20秒前
小柚子发布了新的文献求助10
20秒前
称心不尤完成签到 ,获得积分10
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145621
求助须知:如何正确求助?哪些是违规求助? 2797097
关于积分的说明 7822848
捐赠科研通 2453435
什么是DOI,文献DOI怎么找? 1305652
科研通“疑难数据库(出版商)”最低求助积分说明 627514
版权声明 601469