Revealing Academic Evolution and Frontier Pattern in the Field of Uveitis Using Bibliometric Analysis, Natural Language Processing, and Machine Learning

潜在Dirichlet分配 人工智能 边疆 医学 图书馆学 数据科学 主题模型 计算机科学 地理 考古
作者
Ao Lu,Keyan Li,Guannan Su,Peizeng Yang
出处
期刊:Ocular Immunology and Inflammation [Informa]
卷期号:: 1-16 被引量:1
标识
DOI:10.1080/09273948.2023.2262028
摘要

ABSTRACTPurpose Numerous uveitis articles were published in this century, underneath which hides valuable intelligence. We aimed to characterize the evolution and patterns in this field.Methods We divided the 15,994 uveitis papers into four consecutive time periods for bibliometric analysis, and applied latent Dirichlet allocation topic modeling and machine learning techniques to the latest period. Results The yearly publication pattern fitted the curve: 1.21335x2 − 4,848.95282x + 4,844,935.58876 (R2 = 0.98311). The USA, the most productive country/region, focused on topics like ankylosing spondylitis and biologic therapy, whereas China (mainland) focused on topics like OCT and Behcet disease. The logistic regression showed the highest accuracy (71.6%) in the test set.Conclusion In this century, a growing number of countries/regions/authors/journals are involved in the uveitis study, promoting the scientific output and thematic evolution. Our pioneering study uncovers the evolving academic trends and frontier patterns in this field using bibliometric analysis and AI algorithms.KEYWORDS: Artificial intelligenceuveitismachine learningnatural language processing Disclosure statementNo potential conflict of interest was reported by the author(s).Supplementary materialSupplemental data for this article can be accessed online at https://doi.org/10.1080/09273948.2023.2262028Additional informationFundingThis study was supported by the National Natural Science Foundation Key Program [82230032], National Natural Science Foundation Key Program [81930023], KeyProject of Chongqing Science and Technology Bureau [CSTC2021jscx-gksb-N0010], Chongqing Outstanding Scientists Project (2019), Chongqing Chief Medical Scientist Project (2018), ChongqingKey Laboratory of Ophthalmology [CSTC, 2008CA5003] and ChongqingScience & Technology Platform and Base Construction Program [cstc2014pt-sy10002].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冷静的小虾米完成签到 ,获得积分10
刚刚
1秒前
逍遥子0923应助哈哈哈哈哈采纳,获得10
1秒前
key发布了新的文献求助10
2秒前
受伤纲完成签到 ,获得积分10
2秒前
爆米花应助yellow采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
wml应助苹果味水果采纳,获得10
4秒前
猜猜我是谁完成签到,获得积分10
5秒前
5秒前
温儒儒发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
Hello应助仲夏采纳,获得10
7秒前
迷人夏槐发布了新的文献求助10
7秒前
yellow完成签到,获得积分10
9秒前
Ikaros完成签到,获得积分10
10秒前
JING完成签到,获得积分10
10秒前
冰阔罗完成签到,获得积分10
10秒前
MCst完成签到,获得积分20
10秒前
11秒前
充电宝应助huliang采纳,获得30
12秒前
key完成签到,获得积分10
12秒前
Huobol完成签到,获得积分10
12秒前
12秒前
心信鑫发布了新的文献求助10
13秒前
leena发布了新的文献求助10
13秒前
四季安完成签到 ,获得积分10
13秒前
14秒前
cjdsb发布了新的文献求助10
14秒前
车厘子发布了新的文献求助10
15秒前
无极微光应助学不完了采纳,获得20
16秒前
重重发布了新的文献求助10
16秒前
16秒前
Owen应助dalibaba采纳,获得10
16秒前
啥东西啥完成签到,获得积分10
16秒前
xxiaobai发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461138
求助须知:如何正确求助?哪些是违规求助? 4566175
关于积分的说明 14303831
捐赠科研通 4491884
什么是DOI,文献DOI怎么找? 2460490
邀请新用户注册赠送积分活动 1449811
关于科研通互助平台的介绍 1425582