Revealing Academic Evolution and Frontier Pattern in the Field of Uveitis Using Bibliometric Analysis, Natural Language Processing, and Machine Learning

潜在Dirichlet分配 人工智能 边疆 医学 图书馆学 数据科学 主题模型 计算机科学 地理 考古
作者
Ao Lu,Keyan Li,Guannan Su,Peizeng Yang
出处
期刊:Ocular Immunology and Inflammation [Informa]
卷期号:: 1-16 被引量:1
标识
DOI:10.1080/09273948.2023.2262028
摘要

ABSTRACTPurpose Numerous uveitis articles were published in this century, underneath which hides valuable intelligence. We aimed to characterize the evolution and patterns in this field.Methods We divided the 15,994 uveitis papers into four consecutive time periods for bibliometric analysis, and applied latent Dirichlet allocation topic modeling and machine learning techniques to the latest period. Results The yearly publication pattern fitted the curve: 1.21335x2 − 4,848.95282x + 4,844,935.58876 (R2 = 0.98311). The USA, the most productive country/region, focused on topics like ankylosing spondylitis and biologic therapy, whereas China (mainland) focused on topics like OCT and Behcet disease. The logistic regression showed the highest accuracy (71.6%) in the test set.Conclusion In this century, a growing number of countries/regions/authors/journals are involved in the uveitis study, promoting the scientific output and thematic evolution. Our pioneering study uncovers the evolving academic trends and frontier patterns in this field using bibliometric analysis and AI algorithms.KEYWORDS: Artificial intelligenceuveitismachine learningnatural language processing Disclosure statementNo potential conflict of interest was reported by the author(s).Supplementary materialSupplemental data for this article can be accessed online at https://doi.org/10.1080/09273948.2023.2262028Additional informationFundingThis study was supported by the National Natural Science Foundation Key Program [82230032], National Natural Science Foundation Key Program [81930023], KeyProject of Chongqing Science and Technology Bureau [CSTC2021jscx-gksb-N0010], Chongqing Outstanding Scientists Project (2019), Chongqing Chief Medical Scientist Project (2018), ChongqingKey Laboratory of Ophthalmology [CSTC, 2008CA5003] and ChongqingScience & Technology Platform and Base Construction Program [cstc2014pt-sy10002].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
应作如是观完成签到,获得积分10
1秒前
聪聪great完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
晓军驳回了1ssd应助
1秒前
1秒前
啊哈哈哈完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
jxcandice发布了新的文献求助10
3秒前
旺德福完成签到 ,获得积分10
3秒前
kevin完成签到,获得积分10
3秒前
naomi完成签到 ,获得积分10
3秒前
桐桐应助玉崟采纳,获得10
4秒前
慕青应助地狱跳跳虎采纳,获得10
4秒前
4秒前
英姑应助Autoimmune采纳,获得10
5秒前
Godspeed完成签到,获得积分10
5秒前
静时完成签到,获得积分10
5秒前
gg发布了新的文献求助10
5秒前
5秒前
醒不来的猫完成签到,获得积分10
5秒前
请叫我风吹麦浪应助新一采纳,获得30
5秒前
不对也没错给不对也没错的求助进行了留言
6秒前
6秒前
可爱的函函应助自由寻菱采纳,获得20
6秒前
SandyH发布了新的文献求助10
6秒前
Shan完成签到 ,获得积分10
7秒前
7秒前
玛卡巴卡关注了科研通微信公众号
7秒前
hu970发布了新的文献求助30
7秒前
8秒前
腼腆的安雁完成签到 ,获得积分20
8秒前
中大王发布了新的文献求助10
8秒前
欢呼鼠标完成签到,获得积分20
9秒前
kk完成签到 ,获得积分10
9秒前
jxcandice完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762