Investigation of Low and High-Speed Fluid Dynamics Problems Using Physics-Informed Neural Network

人工神经网络 忠诚 欧拉方程 加速 计算机科学 不连续性分类 流体力学 休克(循环) 推论 应用数学 算法 物理 人工智能 数学 机械 数学分析 医学 电信 内科学 操作系统
作者
Anubhav Joshi,Alexandros Papados,Rakesh Kumar
出处
期刊:International Journal of Computational Fluid Dynamics [Taylor & Francis]
卷期号:37 (2): 149-166 被引量:3
标识
DOI:10.1080/10618562.2023.2285330
摘要

AbstractIn this work, we have employed physics-informed neural networks (PINNs) to solve a few fluid dynamics problems at low and high speeds, with a focus on the latter. For high-speed fluid dynamics problems, we deal with the 1D compressible Euler equation, which is used to solve shock-tube problem, viz., Sod shock-tube, with weighted physics-informed neural networks (W-PINNs). This paper also demonstrates how domain extension (W-PINNs-DE) can improve the accuracy of the W-PINNs method. For high-speed flows, dispersion and dissipation errors are present near discontinuities. The W-PINNs-DE method is shown to mitigate this effect and is proven to have advantage over other approximations. Finally, we have solved the same high-speed problem with low-fidelity solution data to generate high-fidelity solutions. We have demonstrated that we can obtain accurate solutions using low-fidelity data in a few seconds of inference time. We have used relative L2 error for validation with exact or high-fidelity solutions.Keywords: Physics-informed neural networkNavier-Stokes equationscompressible Euler equationSod shock-tubeweighted physics-informed neural networkdomain extension Disclosure statementNo potential conflict of interest was reported by the author(s).Data availabilityThe corresponding author can provide the data supporting the study's findings upon a reasonable request.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc完成签到,获得积分10
刚刚
ab完成签到,获得积分10
刚刚
1秒前
大白鹅发布了新的文献求助10
2秒前
2秒前
Yao丶发布了新的文献求助10
2秒前
CodeCraft应助NatKao采纳,获得10
2秒前
三土有兀完成签到 ,获得积分10
2秒前
Allyyin发布了新的文献求助10
3秒前
未晞发布了新的文献求助10
3秒前
JamesPei应助蚂蚁牙黑采纳,获得10
4秒前
从容的天空完成签到,获得积分10
4秒前
小鹅完成签到,获得积分10
5秒前
5秒前
5秒前
852应助纯白采纳,获得10
5秒前
5秒前
元气少女李逵完成签到,获得积分10
5秒前
所所应助sailll采纳,获得10
6秒前
落雨冥完成签到,获得积分10
6秒前
yznfly应助shirley采纳,获得30
6秒前
王欣瑶发布了新的文献求助10
7秒前
hao关闭了hao文献求助
8秒前
9秒前
10秒前
10秒前
软绵绵完成签到,获得积分10
11秒前
11秒前
上官若男应助ning22宁采纳,获得10
11秒前
11秒前
chen发布了新的文献求助20
12秒前
13秒前
13秒前
逆旅完成签到,获得积分20
13秒前
cbf完成签到 ,获得积分10
14秒前
gdd发布了新的文献求助10
15秒前
16秒前
xxx完成签到,获得积分20
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350