人工神经网络
材料科学
极限抗拉强度
遗传算法
反向传播
过程(计算)
弧(几何)
算法
计算机科学
机械工程
复合材料
人工智能
机器学习
工程类
操作系统
作者
Feiyue Lyu,Leilei Wang,Jiahao Zhang,Mingzhen Du,Zhiwei Dou,Chuanyun Gao,Xiaohong Zhan
标识
DOI:10.1080/02670836.2023.2246772
摘要
The relationship between tensile strength, wire feeding speed and travel speed is built based on Back Propagation (BP) neural network during the wire arc additive manufacturing (WAAM) process. The introduction of a genetic algorithm for optimising the BP neural network (GA-BP) and incorporation of additional parameter combinations through the forward model markedly enhance the prediction accuracy of the process parameter reverse model. The BP neural network with a genetic algorithm model exhibits excellent training results, and the sample population regression reaches 0.97. An error value of the optimised model is only 3.10% for wire feeding speed prediction, only 1.55% for travel speed prediction. The GA-BP reverse model optimises WAAM process parameters and achieves a tensile strength exceeding 230 MPa.
科研通智能强力驱动
Strongly Powered by AbleSci AI