RepDI: A light-weight CPU network for apple leaf disease identification

推论 计算机科学 鉴定(生物学) 任务(项目管理) 分割 编码(集合论) 卷积(计算机科学) 人工智能 深度学习 机器学习 程序设计语言 集合(抽象数据类型) 工程类 植物 生物 系统工程 人工神经网络
作者
Jiye Zheng,Kaiyu Li,Wenbin Wu,Huaijun Ruan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:212: 108122-108122
标识
DOI:10.1016/j.compag.2023.108122
摘要

Apple disease is one of the major factors affecting apple production, and the visual diagnosis of apple leaves is an efficient disease identification solution. In this paper, we propose an efficient lightweight model based on structural reparameterization for apple leaf disease identification, called RepDI for short. To achieve faster inference on the CPU devices, we introduce depth-wise separable convolution and structural reparameterization technology in RepDI, which has different structures during training and inference. In addition, to better capture diseased leaves and disease regions in complex contexts, we propose the parallel dilated attention mechanism module and embed it into RepDI. Experiments show that RepDI can achieve state-of-the-art performance in disease identification task, compared to most lightweight models. Meanwhile, RepDI achieves the fastest inference speed on our desktop CPU, which is an important factor in practical applications. Furthermore, we collect and annotate a novel dataset for apple leaf diseases from real scenarios, called Real-ALD, which is more challenging than previous datasets. And RepDI achieves a top-1 accuracy of 98.92 in the Real-ALD dataset under a limited training configuration. Our code is released to contribute to the plant protection community and we will further explore the potential of RepDI for down-stream detection, segmentation tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
wy.he应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
wy.he应助科研通管家采纳,获得10
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
1秒前
wy.he应助科研通管家采纳,获得10
1秒前
Ky_Mac应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
Ky_Mac应助科研通管家采纳,获得30
1秒前
Twonej应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
chen应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
Twonej应助科研通管家采纳,获得30
1秒前
郑浚杳发布了新的文献求助10
1秒前
2秒前
2秒前
5秒前
czj发布了新的文献求助20
5秒前
柳叶刀Z完成签到 ,获得积分10
5秒前
楠楠呐完成签到 ,获得积分10
6秒前
7秒前
wasailinlaomu完成签到,获得积分10
7秒前
wwwwwwww完成签到,获得积分10
7秒前
Amazing完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742035
求助须知:如何正确求助?哪些是违规求助? 5405283
关于积分的说明 15343770
捐赠科研通 4883510
什么是DOI,文献DOI怎么找? 2625039
邀请新用户注册赠送积分活动 1573909
关于科研通互助平台的介绍 1530861