A unified heat transfer model for gas-liquid two-phase mixing process in a rectangular channel based on steady status identification

传热 流量(数学) 峰度 气泡 机械 混合(物理) 工作(物理) 热导率 材料科学 频道(广播) 热力学 模拟 数学 计算机科学 工程类 物理 统计 电气工程 量子力学
作者
Kai Yang,Yelin Wang,Min Wang,Jianxin Pan,Hua Wang,Qingtai Xiao
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:236: 121612-121612 被引量:6
标识
DOI:10.1016/j.applthermaleng.2023.121612
摘要

Gas-liquid two-phase flow in rectangular channels involves thermal energy, chemical industry, and other fields. However, it is difficult to identify steady flow status and unify heat transfer model owing to the changeable mixing process and the complex industrial environment. In this work, the time series decomposition technique (i.e., variational mode decomposition) and neural network algorithm (i.e., long short-term memory) are employed to identify the steady flow pattern of the gas-liquid mixing process in vertical rectangular channels. The heat transfer model of a single bubble in a rectangular channel is established based on the geometrical characteristics of the bubble. Results demonstrate that a 30-dimensional feature vector is extracted from the conductivity time series for flow pattern recognition. The feature parameters of each intrinsic mode function are period, minimum, maximum, standard deviation, skewness, and kurtosis. Average accuracy of the new model is 94.58% with the highest at 95.83% and the proposed new model improves the recognition accuracy of steady flow pattern by 2.54–6.93% compared with other models adopted in this work. The precision of the new hybrid model is the highest while the number of decomposition layers for the conductivity time series is 5 and the bubble flow exhibits the largest heat transfer area under the same conditions. The proposed hybrid model can be used to enhance the identification accuracy of bubble flow in rectangular channels, contributing to curtailing unneeded flow patterns in industrial processes. The heat transfer model of a single bubble can provide a unified and convenient method for calculating industrial heat transfer. These findings provide a useful guideline for engineering design and energy-saving in the fields of thermal energy and chemical industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷酷尔琴发布了新的文献求助10
1秒前
Ll发布了新的文献求助10
1秒前
优雅山柏完成签到,获得积分10
1秒前
XinyiZhang发布了新的文献求助10
1秒前
小蘑菇应助yangyang采纳,获得10
1秒前
慕青应助欢欢采纳,获得10
2秒前
小憩完成签到,获得积分10
2秒前
南乔发布了新的文献求助10
2秒前
张静静发布了新的文献求助10
3秒前
云儿完成签到,获得积分10
3秒前
淡淡的洋葱完成签到,获得积分10
3秒前
小洲王先生完成签到,获得积分10
4秒前
4秒前
dd完成签到,获得积分10
4秒前
4秒前
5秒前
CCL应助kk2024采纳,获得50
5秒前
wjs0406完成签到,获得积分10
5秒前
自爱悠然发布了新的文献求助10
5秒前
贺雪完成签到,获得积分10
6秒前
6秒前
玉yu发布了新的文献求助10
7秒前
深情秋刀鱼完成签到,获得积分10
7秒前
星辰大海应助冷酷尔琴采纳,获得10
7秒前
7秒前
7秒前
隐形的大有完成签到,获得积分10
8秒前
浩浩大人发布了新的文献求助10
8秒前
buno应助圈圈采纳,获得10
8秒前
9秒前
隐形曼青应助Bo采纳,获得10
9秒前
西宁阿应助啵乐乐采纳,获得10
9秒前
9秒前
阿仔爱学习完成签到,获得积分10
9秒前
为喵驾车的月亮完成签到,获得积分20
10秒前
10秒前
membrane应助Mon_zh采纳,获得20
10秒前
11秒前
11秒前
hhy发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740