A unified heat transfer model for gas-liquid two-phase mixing process in a rectangular channel based on steady status identification

传热 流量(数学) 峰度 气泡 机械 混合(物理) 工作(物理) 热导率 材料科学 频道(广播) 热力学 模拟 数学 计算机科学 工程类 物理 统计 电气工程 量子力学
作者
Kai Yang,Yelin Wang,Min Wang,Jianxin Pan,Hua Wang,Qingtai Xiao
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:236: 121612-121612 被引量:6
标识
DOI:10.1016/j.applthermaleng.2023.121612
摘要

Gas-liquid two-phase flow in rectangular channels involves thermal energy, chemical industry, and other fields. However, it is difficult to identify steady flow status and unify heat transfer model owing to the changeable mixing process and the complex industrial environment. In this work, the time series decomposition technique (i.e., variational mode decomposition) and neural network algorithm (i.e., long short-term memory) are employed to identify the steady flow pattern of the gas-liquid mixing process in vertical rectangular channels. The heat transfer model of a single bubble in a rectangular channel is established based on the geometrical characteristics of the bubble. Results demonstrate that a 30-dimensional feature vector is extracted from the conductivity time series for flow pattern recognition. The feature parameters of each intrinsic mode function are period, minimum, maximum, standard deviation, skewness, and kurtosis. Average accuracy of the new model is 94.58% with the highest at 95.83% and the proposed new model improves the recognition accuracy of steady flow pattern by 2.54–6.93% compared with other models adopted in this work. The precision of the new hybrid model is the highest while the number of decomposition layers for the conductivity time series is 5 and the bubble flow exhibits the largest heat transfer area under the same conditions. The proposed hybrid model can be used to enhance the identification accuracy of bubble flow in rectangular channels, contributing to curtailing unneeded flow patterns in industrial processes. The heat transfer model of a single bubble can provide a unified and convenient method for calculating industrial heat transfer. These findings provide a useful guideline for engineering design and energy-saving in the fields of thermal energy and chemical industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦的皮卡丘完成签到,获得积分10
刚刚
1秒前
KYDD完成签到,获得积分10
1秒前
1秒前
共享精神应助如意的馒头采纳,获得10
1秒前
陈文娟完成签到,获得积分10
2秒前
dd发布了新的文献求助10
2秒前
棋子未明猫完成签到 ,获得积分20
2秒前
Iurgnay完成签到,获得积分10
2秒前
dancha发布了新的文献求助10
3秒前
3秒前
4秒前
lzh发布了新的文献求助10
4秒前
怀玉发布了新的文献求助30
4秒前
zt发布了新的文献求助10
4秒前
玉米粥完成签到,获得积分10
4秒前
无极微光应助微凉采纳,获得20
5秒前
知知完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
小用一阵完成签到,获得积分10
6秒前
7秒前
慕青应助甜甜的忆彤采纳,获得10
8秒前
8秒前
香蕉觅云应助tangzanwayne采纳,获得10
8秒前
Hug发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
xixi发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
天天向上发布了新的文献求助10
10秒前
MW完成签到,获得积分10
10秒前
ycxxyc完成签到,获得积分20
10秒前
myirwyo发布了新的文献求助10
11秒前
上官若男应助冷静怜珊采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719347
求助须知:如何正确求助?哪些是违规求助? 5256132
关于积分的说明 15288645
捐赠科研通 4869222
什么是DOI,文献DOI怎么找? 2614690
邀请新用户注册赠送积分活动 1564705
关于科研通互助平台的介绍 1521914