A unified heat transfer model for gas-liquid two-phase mixing process in a rectangular channel based on steady status identification

传热 流量(数学) 峰度 气泡 机械 混合(物理) 工作(物理) 热导率 材料科学 频道(广播) 热力学 模拟 数学 计算机科学 工程类 物理 统计 电气工程 量子力学
作者
Kai Yang,Yelin Wang,Min Wang,Jianxin Pan,Hua Wang,Qingtai Xiao
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:236: 121612-121612 被引量:6
标识
DOI:10.1016/j.applthermaleng.2023.121612
摘要

Gas-liquid two-phase flow in rectangular channels involves thermal energy, chemical industry, and other fields. However, it is difficult to identify steady flow status and unify heat transfer model owing to the changeable mixing process and the complex industrial environment. In this work, the time series decomposition technique (i.e., variational mode decomposition) and neural network algorithm (i.e., long short-term memory) are employed to identify the steady flow pattern of the gas-liquid mixing process in vertical rectangular channels. The heat transfer model of a single bubble in a rectangular channel is established based on the geometrical characteristics of the bubble. Results demonstrate that a 30-dimensional feature vector is extracted from the conductivity time series for flow pattern recognition. The feature parameters of each intrinsic mode function are period, minimum, maximum, standard deviation, skewness, and kurtosis. Average accuracy of the new model is 94.58% with the highest at 95.83% and the proposed new model improves the recognition accuracy of steady flow pattern by 2.54–6.93% compared with other models adopted in this work. The precision of the new hybrid model is the highest while the number of decomposition layers for the conductivity time series is 5 and the bubble flow exhibits the largest heat transfer area under the same conditions. The proposed hybrid model can be used to enhance the identification accuracy of bubble flow in rectangular channels, contributing to curtailing unneeded flow patterns in industrial processes. The heat transfer model of a single bubble can provide a unified and convenient method for calculating industrial heat transfer. These findings provide a useful guideline for engineering design and energy-saving in the fields of thermal energy and chemical industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YangSY发布了新的文献求助30
刚刚
何必问发布了新的文献求助10
刚刚
1秒前
gilderf发布了新的文献求助10
1秒前
咻咻发布了新的文献求助10
2秒前
2秒前
2秒前
月亮完成签到 ,获得积分10
2秒前
2秒前
yuan发布了新的文献求助10
2秒前
希望天下0贩的0应助tiasn采纳,获得10
2秒前
今后应助阿尔喷斯少年采纳,获得30
3秒前
小蘑菇应助九方嘉许采纳,获得10
4秒前
自由的晓啸完成签到,获得积分20
4秒前
4秒前
4秒前
大力飞雪发布了新的文献求助10
4秒前
戳戳完成签到 ,获得积分10
4秒前
4秒前
无私的夕阳应助WUWEI采纳,获得10
4秒前
苹果王子6699完成签到 ,获得积分10
5秒前
5秒前
wk完成签到,获得积分10
5秒前
草莓熊发布了新的文献求助10
6秒前
6秒前
对方正在输入完成签到 ,获得积分10
6秒前
6秒前
科研通AI6.1应助祁郁郁采纳,获得10
6秒前
6秒前
venkash完成签到,获得积分10
7秒前
hbb发布了新的文献求助10
7秒前
7秒前
SAKURA完成签到,获得积分10
7秒前
程程程完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
卓垚完成签到,获得积分10
7秒前
8秒前
共享精神应助xiaoting采纳,获得10
8秒前
香蕉千风完成签到 ,获得积分10
9秒前
和谐的数据线完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774034
求助须知:如何正确求助?哪些是违规求助? 5615602
关于积分的说明 15434217
捐赠科研通 4906509
什么是DOI,文献DOI怎么找? 2640270
邀请新用户注册赠送积分活动 1588076
关于科研通互助平台的介绍 1543114